Facultad Latinoamericana de Ciencias Sociales, FLACSO Ecuador Departamento de Políticas Públicas Convocatoria 2020-2022

Tesis para obtener el título de Maestría en Estudios Urbanos con mención en Geografía y Procesos Territoriales

Territorios hidrosociales y morfologías urbanas en la cuenca del río Napo: análisis de la configuración social del agua, el poder hídrico y los paisajes urbanos en Puerto Francisco de Orellana (El Coca) provincia de Orellana, Ecuador (2020-2022)

Yosselyn Anabel Sánchez Rojas

Asesor: Gustavo Adolfo Durán Saavedra

Lectores: Manuel Bayón y Estevan Bartoli

Quito, septiembre de 2023

Dedicatoria

A Leodan y María Luisa, quienes ingeniosa y amorosamente me introdujeron en la ciencia, el aprendizaje y la curiosidad, pavimentando así mi camino en la investigación.

Epígrafe

-¡Es un río muy hermoso! -dijo Siddhartha a su acompañante:

-Sí -dijo el barquero-, un río muy hermoso, yo lo amo sobre todas las cosas. Le he escuchado con frecuencia, con frecuencia he mirado en sus ojos, y siempre he aprendido algo de él. Se puede aprender mucho de un río. 1

— Hesse Hermann

¹Extracto del libro Siddhartha de Hermann Hesse, 2010, 9na edición, Traducción: Marco A. Garibay M. pág. 64.

Índice de contenidos

Resumo	en		12
Agrade	cimie	entos	13
Introdu	ıcción	1	15
Capítul	lo 1.	Marco analítico: territorios y morfologías asociadas al agua	28
1.1	Fur	ndamentos teórico-epistemológicos	28
1.2	Dis	cusión teórica macro	33
1.2	2.1	Ecología Política Latinoamericana: El Sur es nuestro Norte	33
1.2	2.2	Geografías del agua: De la naturaleza y sociedad a la identidad y el lugar	34
1.2	2.3	Modelo de urbanización amazónico	36
1.3	Dis	cusión teórica meso	37
1.3	3.1	Territorios hidrosociales	37
1.3	3.2	Morfología urbana	41
1.4	Mo	delo de análisis metodológico	44
1.5	Dis	cusión teórica micro	45
1.5	5.1	Flujos del agua y poder y paisajes del agua: La ciudades de agua en tus ojos	s 45
1.5	5.2	Forma, expansión y evolución urbana amazónica	46
1.5	5.3	Paisajes urbanos hídricos	48
1.5	5.4	Las periferias y la paradoja del agua en la Amazonía	48
1.6	Sín	tesis de la discusión teórica	50
1.7	Est	rategia metodológica	51
Capítulo 2.		Contextualización: la Amazonía ecuatoriana de los ríos	52
2.1	El a	agua es socionatural	52
2.1	.1	Red amazónica: La Amazonía como un todo	54
2.2	Apı	roximación a una delimitación de cuencas vivas a nivel regional	60

2.2	2.1	Escala de ciudad: Provincias/cantones y sub-cuencas hídricas	62
2.2	2.2	Tipologías urbanas amazónicas	62
2.2	2.3	Sub-Cuencas hídricas de la Amazonía ecuatoriana	63
2	2.4	Redes hidrosociales	64
2.2	2.5	Escala de lugar/humana: Relaciones hidrosociales	66
2.3	Sel	ección de los casos de estudio	66
2	3.1	Puerto Francisco de Orellana - El Coca	67
2	3.2	Contexto situacional	67
2	3.3	Identidad ribereña	69
Capítu	lo 3.	Morfogénesis de los territorios acuáticos de "El Coca"	71
3.1	El a	agua y el origen de la ciudad	74
3.2	Me	morias del río y la ciudad	77
3.2	2.1	Relato: La ciudad de los tres ríos	78
3.2	2.2	Cartografía histórica de El Coca: un análisis morfogenético	84
Capítu	lo 4.	Lo doméstico y la escala humana: construcción de periferias de borde	90
4.1	Co	nstrucciones hidrosociales	91
4.2	El a	gran río Napo: El eco ya no llega	92
4.2	2.1	Los espacios del agua	93
4.2	2.2	Agua y economía	96
4.3	La	muerte anunciada del río Coca	99
4	3.1	Agua y contaminación	. 100
4	3.2	Agua y niñez	. 102
4.4	Cal	lmo y silencioso: Viviendo en la ribera del río Payamino	. 104
4.4	4.1	Agua y vivienda	. 105
4.5	Sul	ojetividades en torno al río	. 107
4.6	La	ciudad de los tres ríos: cotidianidad, identidad y riesgo	. 108

Capítulo 5.		Lo urbano y lo comunal: espacios públicos del agua	111
5.1	Pat	rones urbanos en los bordes de El Coca	112
5.1	.1	Acceso al río: derecho o privilegio	113
5.2	Cic	lo hidrosocial urbano	119
5.2	1	Flujos del agua	119
5.2	2	Flujos de poder	124
5.3	Des	sigualdad y resistencia en los espacios hidrosociales de El Coca	127
Capítul	o 6.	Lo territorial: ríos que configuran ciudades y la vida	128
6.1	Des	sde el parche hasta el mosaico hídrico	128
6.2	Pat	rones hidrosociales	134
6.2	1	Composición y configuración de los paisajes del agua amazónicos	135
6.3	Pro	cesos hidrosociales: la función del paisaje hidrosocial	137
6.4	Mo	rfologías urbanas a partir de las morfologías del agua	140
Capítul	o 7.	Discusión: el río prefiere las curvas a los bordes	145
7.1	Ela	agua como moldeadora de la forma urbana	145
Conclu	sione	s: territorios hidrosociales amazónicos	156
Referer	ıcias .		164
Anevos			173

Lista de ilustraciones

Figuras

Figura 2.1. Escala regional: Pan-Amazonía y Región Amazónica ecuatoriana (RAE)	59
Figura 3.1. Grabado Omagua que simboliza los ríos	73
Figura 3.2.Línea de tiempo de los hechos históricos que generaron el desarrollo urbano c	
Figura 3.3. Vivienda ribereña y ocupación de la ribera del Río Napo por Naporunas	76
Figura 3.4. Frente fluvial del río Napo durante la llegada de los primeros colonos	80
Figura 3.5. Primeras configuraciones urbanas e hitos arquitectónicos de El Coca	82
Figura 3.6. Construcciones e infraestructuras que se cambiaron o abandonaron	83
Figura 3.7. Evolución del tejido hídrico de los ríos de El Coca	85
Figura 4.1. Relación hidrosocial: agua y espacio público en el Río Napo	94
Figura 4.2. Relación hidrosocial: agua y economía en el Río Napo	97
Figura 4.3. Relación hidrosocial: agua en disputa en el Río Coca	101
Figura 4.4. El Río Coca a través de las infancias	103
Figura 4.5. Relación hidrosocial: agua como proyección de la vivienda en el Río Payami	
Figura 5.1. Teorías urbanas aplicadas a la conformación de las tipologías urbanas de bor	de 113
Figura 5.2. Ciclo hidrosocial urbano de El Coca: flujos de agua y flujos de poder	120
Figura 5.3. Sistema de alcantarillado de El Coca	123
Figura 5.4. Variación de la calidad del agua en los ríos de El Coca (2016-2019)	125
Figura 6.1. Ubicación de los recortes territoriales	129
Figura 6.2. Autocorrelación espacial multivariada de Geary para RT1 en los años 2020 y	
Figura 6.3. Estadísticos de quintiles de las variables: R-PLAND, R-LSI, R-AI y R-PAFF los años 2022 y 2022	R para 143

Figura 7.1. Configuración de los patrones urbanos de borde en El Coca según la desida	ıd y la
forma	151
Figura 7.2. Configuración de los patrones urbanos de borde en El Coca según la acces	ibilidad
al río y la presencia de bosque/empresas petroleras	153
Mapas	
Mapa 2.1. Delimitación de cuencas hidrosociales de la RAE-Escala regional (Sumator	ria) 61
Mapa 2.2. Delimitación de cuencas hidrosociales de la RAE-Escala regional: Multifac	tor 61
Mapa 2.3. Redes hidrosociales del Río Napo y el Río Upano-Escala de sitio	65
Mapa 2.4. Ubicación del caso de estudio	68
Mapa 3.1. 35 años de transición del uso de suelo hídrico - El Coca (1985-2020)	86
Mapa 3.2. 35 años de transición del uso de suelo urbano - El Coca (1985-2020)	87
Mapa 3.3. 35 años de ganancias y pérdidas del uso de suelo hídrico-El Coca (1985-20)	20) 88
Mapa 4.1. Subjetividades territoriales hidrosociales en El Coca	108
Mapa 5.1. Ubicación de los patrones de borde de El Coca	115
Mapa 5.2. Patrones urbanaos de borde de El Coca	116
Tablas	
Tabla 1.1. Modelo de análisis metodológico	44
Tabla 2.1. Resumen de las tipologías urbanas amazónicas	62
Tabla 2.2. Datos sobre las unidades hidrográficas de nivel 5 en la RAE	63
Tabla 2.3. Datos sobre la infraestructura hídrica en la RAE	66
Tabla 5.1. Calidad del agua en los ríos de El Coca	125
Tabla 5.2. Distancia a lugares ribereños desde El Coca	126
Tabla 6.1. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los aí	ños
2020 y 2022 para cada uso de suelo (RT2)	129

Fotos	
Fotos	
Tabla 7.5. Relaciones hidrosociales en los ríos de El Coca: Agua-territorio	150
Tabla 7.4. Relaciones hidrosociales en los ríos de El Coca: Agua-resistencia	149
Tabla 7.3. Relaciones hidrosociales en los ríos de El Coca: Agua-turismo	148
Tabla 7.2. Relaciones hidrosociales de los ríos de El Coca: Agua-alimentación	147
Tabla 7.1. Relaciones hidrosociales de los ríos de El Coca: Agua-transporte	146
Tabla 6.11. Modelo ajustado de regresión lineal a escala territorial 1 (RT1-10 kilómetros).	142
Tabla 6.10. Modelos de regresión lineal a escala territorial 1 (RT1-10 kilómetros)	140
Tabla 6.9. Asociación de la forma hídrica y la forma urbana para el año 2022	138
Tabla 6.8. Asociación de la forma hídrica y la forma urbana para el año 2020	137
Tabla 6.7. Descripción de los tipos de correlaciones espaciales	135
2020 y 2022 según su uso de suelo y eje fluvial (RT1)	134
Tabla 6.6. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años	
para cada año (RT1)	
Tabla 6.5. Prueba Kruskall Wallis de diferencias de métricas de paisaje entre ejes fluviales	
Tabla 6.4. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para cada uso de suelo (RT1)	132
2020 y 2022 según su uso de suelo y eje fluvial (RT2)	131
Tabla 6.3. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años	121
para cada año (RT2)	130
Tabla 6.2. Prueba Kruskall Wallis de diferencias de métricas de paisaje entre ejes fluviales	

Lista de abreviatura y siglas

GAD Gobierno Autónomo Descentralizado

RAE Región Amazónica Ecuatoriana

EPU Ecología Política Urbana

PLAND Porcentaje de paisaje perteneciente a una clase

NP Número de parches

PD Densidad del parche

LPI Índice del parche más largo

LSI Índice de forma del paisaje

A MN Media del área del parche

A MD Mediana del área del parche

SHAPE (SH*) Índice de forma

FRAC (FR*) Índice de dimensión fractal

PAFRAC (PAFR*) Dimensión fractal del perímetro-área

AI Índice de agregación

ENN MN Distancia euclidiana a vecino más cercano de cada parche

Declaración de cesión de derecho de publicación de la tesis

Yo, Yosselyn Anabel Sánchez Rojas, autor de la tesis titulada "Territorios hidrosociales y morfologías urbanas en la cuenca del río Napo: análisis de la configuración social del agua, el poder hídrico y los paisajes urbanos en Puerto Francisco de Orellana (El Coca), provincia de Orellana Ecuador (2020-2022)" declaro que la obra es de mi exclusiva autoría, que la he elaborado para obtener el título de maestría de Investigación en Estudios Urbanos, mención en Geografía y Procesos Territoriales concedido por la Facultad Latinoamericana de Ciencias Sociales, FLACSO Ecuador.

Cedo a la FLACSO Ecuador los derechos exclusivos de reproducción, comunicación pública, distribución y divulgación, bajo la licencia Creative Commons 3.0 Ecuador (CC BY-NC-ND 3.0 EC), para que esta universidad la publique en su repositorio institucional, siempre y cuando el objetivo no sea obtener un beneficio económico.

Quito, septiembre de 2023

Firmado electrónicamente por:
YOSSELYN ANABEL
SANCHEZ ROJAS

Firma

Yosselyn Anabel Sánchez Rojas

Resumen

La presente investigación se ha planteado estudiar la configuración de los territorios hidrosociales y la morfología urbana en el contexto de la urbanización amazónica ecuatoriana, empleando al paisaje urbano como unidad territorial ya que este, permite tanto representar la naturaleza heterogénea del territorio amazónico como generar un estudio multiescalar en el que se reflejan las realidades sociales, culturales y económicas resultantes de la relación ríociudad.

En este contexto, el caso de estudio definido fue la ciudad de Puerto Francisco de Orellana (El Coca) de la provincia de Orellana ubicada en la región amazónica norte y el periodo de análisis es el periodo 2020-2022, lo cual no quiere decir que se excluyan aspectos históricos de la configuración morfológica e hidrosocial sino más bien que se busca representar claramente la configuración actual encontrada en el territorio. Por ello, herramientas teóricas y metodológicas como red, ciclo y relaciones hidrosociales son abordados como componentes que demuestran el carácter estructurante en la forma y la producción urbana y suburbana de la ciudad.

Agradecimientos

A Gustavo Durán, gracias por confiar en mí y en esta investigación, sin tu asesoría, palabras, confianza y paciencia, este barco teórico no hubiera llegado a puerto, cada comentario, taller y aprendizaje me ha permitido crecer como investigadora y fortalecer mi vocación.

A Manuel Bayón, a quién agradezco infinitamente su sabiduría amazónica, fuiste un guía para conocer la Amazonia tanto en la teoría como en la práctica, las palabras no alcanzan para expresar cuánto agradezco haber aprendido de ti.

A Cristina Loya, cada reunión, grupo de estudio y recordatorio, me motivó a trabajar y me demostró una vez más, que la investigación no es un viaje solitario.

A Katia, Andreita, Roci, Dani y Juan Guillermo, quienes fueron grandes compañeros de aprendizaje en este proceso de investigación amazónica, sin duda gracias a ellos siento que soy parte de una comunidad científica amazónica abierta.

Al Padre José Miguel Goldáraz, gracias por compartir conmigo sus vivencias y permitirme navegar entre sus recuerdos y conocer la ciudad que se formó entre ríos, selva, colonos, índigenas y petroleras.

A Leopoldo Pauker, y Bolivia Uquilla, quienes desinteresadamente y con mucha sinceridad narraron sus historias brindándome la oportunidad de ver a El Coca de antaño a través de sus ojos, oír los susurros del pasado y sentir paso a paso la construcción de la ciudad.

A Edwin García, Gladis y su familia, por su amabilidad al compartir conmigo más que un día de pesca en el río Napo, este viaje fue un recorrido fluvial que desveló sin pretensiones las cotidianidades que se entretejen a partir del río.

A los moradores de los barrios ribereños, gracias por permitirme entrevistarlos y mostrarme las distintas relaciones que se forjan entre el río y la ciudad.

A MACCO, por su basta colección bibliográfica y cartográfica, la cual fue una base para empezar este recorrido investigativo.

Al Ingeniero Ulises Jimenez, y demás autoridades del GAD de Orellana que amablemente me brindaron información, recorridos, entrevistas y contactos durante el trabajo de campo.

A Paola Ortiz, quién amablemente me brindó ayuda con el análisis paisajístico.

A mis docentes de la maestría, a FLACSO-Ecuador, por abrirme las puertas hacia nuevos conocimientos y habilidades, y especialmente a Pablo Barona y Nicolás Cuvi que me brindaron asesoría en momentos clave de esta investigación.

Finalmente, A Kay Mee Kyung, cuando comencé este viaje era menos que una principiante en temas de Amazonía, me contaste tu experiencia y me inspiraste a estudiar los ríos amazónicos, me transmitiste tu pasión y gracias a eso estuve estos años entretejiendo teorías y saberes en la Amazonía.

Introducción

La presente investigación se desarrolló con el objetivo de ofrecer una mirada desde el agua a los procesos de urbanización amazónica y las formas urbanas que esta produce y configura. Principalmente aportando a la visibilización del aspecto social del agua desde el análisis enfocado en los territorios hidrosociales y sus configuraciones; puesto que, en los estudios hidrosociales el agua funciona como elemento transformador que impacta y estructura la forma en que crecen y se configuran morfológicamente las ciudades. Para ello, se construyó un marco teórico-metodológico que se fundamenta en macro teorías relacionadas con la Ecología Política Urbana, la Ecología del Paisaje y las tesis de Urbanización Planetaria o Extendida en el contexto amazónico en conjunción con las Geografías del Agua.

La urbanización amazónica es un proceso multicausal y multiescalar, por ende, fue necesario analizar las dinámicas de urbanización desde distintas miradas que contrasten y sean complemento frente a las discusiones hegemónicas dominantes. Desde el agua, se logró una mirada a la "Amazonía de los ríos", esa que aunque crece y se desarrolla paralela a la Amazonía de las vías e infraestructuras, ha perdido protagonismo y relevancia frente a las infraestructuras. En ese sentido, el abordaje desde el agua y sus geografías permitió ofrecer una aproximación alternativa y una mirada complementaria de la complejidad territorial amazónica, su urbanización y producción urbana, evidenciando tipologías ribereñas y formas de habitar que aún mantienen vínculos estrechos con el río y el agua.

Problemática de la investigación

A pesar de su rápida urbanización, el rol de sus provincias como centros petroleros y su diversidad e importancia ecológica y cultural, la región amazónica aún se percibe como una periferia del país. Esta región se ha encontrado, desde su colonización, en una posición histórica de vulnerabilidad, enfrentándose continuamente a diversas formas de extractivismo, colonialismo externo e interno y discriminacion. Por ello, un estudio desde un ente dinámico como los ríos, que guardan la memoria del lugar y que son un vestigio vivo de los procesos territoriales, permite acercarse a la urbanización desde un actor que se ha vulnerado, pero que también se ha adaptado a la forma de crecimiento de las ciudades y ha influido en su forma y configuración.

La Amazonía al ser una región compleja, heterogénea y dinámica de redes que se influencian simultáneamente y juegan un rol de gran importancia en distintas esferas de la sociedad (Cabrera-Barona et al. 2020; Ruiz Agudelo et al. 2020; da Costa and Rosa 2017), es también

un sistema de red urbana aún en desarrollo en la que sus componentes (nodos y flujos) mantienen una relación urbana sinérgica entre sí (Erazo Chalco 2017). Por ende y para su estudio, la red amazónica (urbana, ecosistémica, cultural, etc.) no puede ser dividida pues es la interrelación lo que hace de la Amazonía un territorio diverso y pulsante de vida (Koenig 2020) con una importancia tanto regional como planetaria.

A lo largo de la historia, esta red se ha visto afectada y se ha fracturado debido a distintos procesos entre los que se destacan la colonización, las misiones y las políticas implementadas (Bayón 2019; Jarrín, Carrillo Tapia, and Zamora 2016; García 1999). Siendo principalmente estas políticas de tipo migratorio, económicas y desarrollistas exógenas las que jugaron un gran papel en el proceso del auge y las depresiones extractivas y agropecuarias debido a que se basaban en la explotación incontrolada de los recursos naturales (Bayón 2019; Jarrín, Carrillo Tapia, and Zamora 2016). Como consecuencia, la red amazónica actual es un territorio fragmentado en el que el desarrollo de la red urbana implica principalmente una pérdida de la red ecosistémica de la región (bosques y ríos).

En Ecuador, el proceso de urbanización amazónica se ha dividido en cuatro fases: la fase colonial (1538-1809), el boom cauchero (1880- 1920), el boom petrolero (1940-2007) y la urbanización planetaria² (2010-Actualidad) (Bayón 2019; Wilson, Bayón, and Diez 2015). Estas fases han generando formas específicas de producción urbana y cambios particulares en el paisaje urbano y natural. Cabe recalcar, que es a partir del periodo de extracción petrolera, que se observa en la Región Amazónica Ecuatoriana (RAE) un proceso de explosión urbana³ (Bayón 2019), es decir, una urbanización acelerada e intensa que surgió a partir de la construcción de infraestructura vial y que en Ecuador fomentó la consolidación urbana de ciudades como Lago Agrio, Coca o Shushufindi (Bayón et al. 2020; Cabrera-Barona et al. 2020; Bayón 2019).

La explosión urbana difumina aún más las fronteras urbano-rurales y en la actualidad con su consolidación, este proceso se continúa acentuando debido a que aún se mantiene como

³ Proceso mediante el cual el surgimiento, crecimiento o consolidación de las ciudades se da de forma dramática y acelerada.

² Tesis planteada por Neil Brenner (2013) la cual se basa en plantear una explicación teórica sobre la urbanización actual frente a la limitante encontrada en la dicotomía de lo urbano y lo rural.

finalidad prioritaria la búsqueda de la eliminación de barreras a la movilidad de las mercancías y el capital (Wilson, Bayón, and Diez 2015). La lógica capitalista observada en la Amazonía produce un conjunto de presiones y amenazas sobre el territorio que van desde la deforestación hasta la contaminación, la reducción de áreas naturales protegidas y otros factores. A pesar de esta lógica operante a escala regional, el proceso de urbanización de cada ciudad amazónica es diferente (Guerrero Cazar 2017; da Costa and Rosa 2017).

En la región norte, el boom petrolero generó el fenómeno de implosión/explosión urbana de sus ciudades (Bayón 2019) generando a su vez que sus poblaciones indígenas se vieran inmersas en un proceso de colonización interna que instauró el cambio hacia las actividades comerciales exógenas (Jarrín, Carrillo Tapia, and Zamora 2016, 28). En cambio, en la región sur fueron las actividades mineras las determinantes de la configuración territorial (Bayón et al. 2020). Además, en esta región los períodos de auge y posterior declive incidieron en los ciclos de colonización y ocupación tanto de la tierra como los ríos (Jarrín Valladares, Tapia Carrillo, and Zamora 2017).

Estadísticamente, la explosión urbana regional se evidencia en los datos recolectados en el último Censo de Población y Vivienda (2010)⁴, según los cuales la región amazónica, pese a ser la región con mayor concentración de ciudades pequeñas, presenta el mayor crecimiento urbano del país (39% de tasa de crecimiento poblacional) y así mismo, sus capitales de provincia presentan los índices más altos de crecimiento urbano entre 2000 y 2010 superando el 40% de crecimiento urbano. Estos datos reflejan no solo la velocidad del acelerado proceso de urbanización en la región sino que además permiten evidenciar como a escala regional las actividades económicas extractivas, traducidas a la acumulación del capital, han sido el principal marcador de la urbanización (Wilson, Bayón, and Diez 2015) produciendo cambios en la relación naturaleza-sociedad y con ello, en los paisajes urbanos de las ciudades amazónicas.

De esta manera, el fenómeno urbano observado en el contexto amazónico ha generado que los límites entre lo urbano y lo rural se desdibujen, sobrepongan y combinen formando un territorio de dinámicas híbridas que se establecen como parte del modelo de urbanización

⁴ Censo Nacional realizado por el Instituto Nacional de Estadística y Censos (INEC) en 2010

extendida (Côrtes, De Oliveira D'Antona, and Ojima 2020). Este modelo implica que el proceso de urbanización trasciende de los núcleos urbanos, es decir, se extienden fuera de los centros urbanos alcanzando una estructura diversa que no se concentra ni se limita a las divisiones administrativas (Brenner 2013; Durán, Bayón Jiménez, and Bonilla 2020; Cabrera-Barona et al. 2020; Bayón Jiménez and Arrazola Aranzábal 2020), convirtiendo al tejido urbano en un mosaico de interfaces de distinta intensidad en el continuum urbano-rural⁵; en el que sí bien, las ciudades comparten similitudes también presentan contrastes ya sea debido a su localización o por su historia o edad (Cabrera-Barona et al. 2020; Côrtes, De Oliveira D'Antona, and Ojima 2020).

Cuando lo urbano y lo rural no tienen un lugar particular, la morfología urbana de las ciudades, origen y evolución de la forma urbana y suburbana, se complejiza. La morfología urbana al estudiar los procesos y actores que moldean la forma física de las ciudades se relaciona a su vez con el proceso de expansión urbana (A. Cardoso et al. 2020). Este proceso es igualmente relevante pues incide en las relaciones de la sociedad con la naturaleza que producen una reconfiguración social de las redes hídricas (Fontaine 2005; Schor et al. 2014; Chávez Salazar 1999), es decir, el agua es socialmente moldeada por las personas y a su vez el agua influye en las ciudades y en las formas de habitar.

De igual manera, la difuminación de lo urbano y lo rural modifica las formas de ocupación territorial y las dinámicas que adoptan las poblaciones. En la Amazonía, paralelamente a procesos de migración campo-ciudad se observa también casos de apropiación territorial multisituada (Alexiades and Peluso 2016), lo cual refleja no solo la generación de hibridaciones urbano-rurales sino también la heterogeneidad territorial y como se construyen especificidades y particularidades multiescalares bajo lógicas distintas a las observadas en otras regiones.

Además, las dinámicas multilocalizadas observadas en la Amazonía implican replantear y repensar a los estudios amazónicos como estudios en red que permitan concebir a las fronteras estáticas como fronteras móviles o dinámicas, es decir, fronteras que se mueven y cambian a lo largo del tiempo. Por ende, la delimitación territorial, al ser un proceso para establecer

⁵ Estructura de mayor complejidad frente a la que se presenta en la dicotomía urbano-rural (A. Cardoso et al. 2020)

fronteras, regiones o zonas de intervención y ser también un instrumento que refleja las relaciones políticas, culturales, económicas y de poder de un territorio, debe ser una que integre otras realidades necesarias para el abordaje integral de la producción urbana y la urbanización amazónica.

La Amazonía tiene múltiples "fronteras" que cuando no son concebidas como dinámicas y variables en el espacio y tiempo pueden llegar a limitar el estudio de esta red y sus procesos. Según Dal'Asta, Amaral, and Monteiro (2017) pensar en la Amazonía presupone pensar en fronteras difusas en las que lo urbano y lo rural se entrelazan. Por consiguiente y como una alternativa de delimitación se aborda desde el paraguas de los territorios hidrosociales para realizar una aproximación al espacio amazónico por medio de la integración del espacio físico y social que refleja las formas que toma la ciudad, la relación naturaleza-sociedad, y las configuraciones en torno al agua. Además, desde los territorios hidrosociales se puede trascender a las fronteras político-administrativas hacia un estudio del factor social del agua y los procesos que se gestan aguas arriba e influyen aguas abajo.

El agua siempre ha sido considerada más que un recurso y más aún para culturas como la amazónica y la andino-amazónica, en las que el agua ha tenido y adquirido valores trascendentales como el de ser fuente de vida y origen de las civilizaciones (Rondón Ramírez 2017). Según Durán, Bayón Jiménez, and Bonilla (2020), el agua es un elemento de la cotidianidad que se relaciona estrechamente con la producción urbana. Por lo tanto, se vincula con el crecimiento urbano y la expansión, las dinámicas socioculturales y la forma urbana (Durán Díaz 2014b); y muestra el metabolismo urbano de las ciudades (Córdova, Contreras-Escandón, and Marcelo 2020).

En la Amazonía, el agua es uno de los elementos socionaturales que permite visualizar las dinámicas que operan en el sistema integrado naturaleza-sociedad, los procesos híbridos y los cambios del ecosistema vivo que constituyen las ciudades y poblados amazónicos, y es este elemento el que permite observar desigualdades sociales, conflictos y resistencias por su control, uso y gestión, a su vez, responde a una mirada al eje de los ríos y su conexión con la vida urbana y la cotidianidad, lo cual permite visualizar un lado de la urbanización que se ha visto constantemente relegado en los estudios sobre la urbanización en los que domina el análisis de la vialidad, las infraestructuras, las distancias y los tiempos.

De forma complementaria a los estudios amazónicos enfocados en la red vial, la conectividad y la jerarquía urbana que brindan grandes aportes sobre los procesos regionales que marcan la

urbanización, los estudios híbridos buscan reflexionar sobre redes alternas que funcionan gracias a otras dinámicas y lógicas de producción urbana. Por ello, desde el enfoque de las geografías del agua, se considera a los ríos urbanos como elementos que funcionan como vértebra urbana (Durán Díaz 2014b). En la Amazonía ecuatoriana, esta vertebración estructurante de los ríos y su influencia en la morfología urbana aún ha sido poco descrita y analizada, a pesar de la relevancia del agua en el bioma amazónico.

En base a lo antes mencionado, las particularidades y diversidades socioculturales, económicas e históricas, tanto a nivel regional como a nivel de subregiones o ciudades de la región amazónica, impactan tanto la morfología urbana como los paisajes amazónicos (Monteiro et al. 2020), generando así una necesidad de un estudio de lo hidrosocial bajo el enfoque de la Ecología del Paisaje (EP) que busca comprender los procesos y patrones ecológicos existentes en el espacio. Como resultado de tomar este enfoque se constituye como recorte territorial al paisaje urbano, puesto que este se compone de un mosaico de diferentes coberturas, es decir, es de naturaleza heterogénea (Arroyo-Rodríguez, Moreno, and Galán-Acedo 2017).

Además de ello, el paisaje se caracteriza por ser un elemento multiescalar en el que se reflejan los cambios en la heterogeneidad, los cuales tienen claras repercusiones en la fragmentación urbana. Adicionalmente, los cambios del paisaje, son de gran importancia en los estudios amazónicos dado que un aumento en la fragmentación y la deforestación implica no solo pérdida de la biodiversidad sino también de la integridad ecosistémica y el bienestar humano de las poblaciones amazónicas (Arroyo-Rodríguez, Moreno, and Galán-Acedo 2017).

Los paisajes amazónicos se han visto transformados por distintos procesos que no son necesariamente una respuesta lineal y directa a la demanda del mercado (Jarrín Valladares, Tapia Carrillo, and Zamora 2017) y actualmente se encuentran en la región ecuatoriana tanto paisajes donde existe un predominio de pastizales, zonas agrícolas, áreas urbanas, como de bosque nativo, en los cuales la riqueza y diversidad se mantiene (Monteiro et al. 2020). Según Alcázar (2021), las transformaciones de los paisajes amazónicos implican a su vez una transformación de la estructura de las sociedades. Entre esta gama de paisajes antrópicos y naturales, los paisajes del agua urbana reflejan tanto el proceso producido por la ocupación humana del territorio como la permanencia y permeabilidad de la naturaleza en contextos urbanos.

Frente a esta problemática que engloba mayoritariamente el proceso de urbanización acelerado, el cambio demográfico significativo y las afectaciones a la ecología y el equilibrio social de la región (Jarrín Valladares, Tapia Carrillo, and Zamora 2017), fue significativo plantear un estudio basado en los territorios hidrosociales amazónicos, ya que estos con su naturaleza dinámica requieren un análisis evolutivo que refleja de forma paralela tanto el origen, la evolución del tejido urbano y la forma física que toman los centros urbanos en el espacio y el tiempo (R. Cardoso and Meijers 2020; A. Cardoso et al. 2020; Monteiro et al. 2020) como las relaciones río-ciudad que trascienden al recurso y se convierten en generadoras de cohesión social y aportan con ello, una mirada a los ríos como espacios con potencial para la planificación urbana (Durán Díaz 2014b).

En contextos amazónicos, los estudios sobre morfología urbana, presentan limitaciones concernientes a la falta de bases de datos históricos y la adaptabilidad de los modelos europeos de los estudios sobre morfología urbana hacia un modelo que se adapte al dinamismo e hibridación del territorio amazónico (A. Cardoso et al. 2020). Sin embargo, los estudios sobre los territorios hidrosociales, los cuales son complejos de delimitar debido a su naturaleza dinámica y variante, constituyen una herramienta teórica y metodológica para aproximarse a las tipologías de paisajes existentes en la región.

Al conjugar las delimitaciones de cuenca hidrográfica y las divisiones político-administrativas y reconfigurarlas en una cuenca hidrosocial o cuenca híbrida se consigue un estudio que integra lo físico y lo social (Rondón Ramírez 2017; Córdova, Contreras-Escandón, and Marcelo 2020) evidenciando tanto la forma de los centros urbanos en red como sus relaciones y significaciones del agua y sus paisajes urbano/hídricos.

Pregunta de Investigación

Respondiendo a la problemática planteada, el presente trabajo de tesis busca dar respuesta a la siguiente pregunta investigativa: ¿De qué manera la configuración multiescalar de los territorios hidrosociales influye en los paisajes urbano/hídricos de la morfología urbana de la ciudad El Coca (Puerto Francisco de Orellana)?

De igual forma esta pregunta central generó seis preguntas secundarias: 1) ¿Cuáles son las bases teóricas en las que se fundamenta el estudio de los territorios hidrosociales y la morfología urbana y cuáles de estas tesis se aplican para el contexto de la Amazonía ecuatoriana?; 2) ¿De qué manera se pueden delimitar territorialmente y de forma geográfica los territorios hidrosociales en la región Amazónica ecuatoriana para una aproximación tanto

social como urbana desde el agua?; 3) ¿De qué manera se ha construido la relación río-ciudad en los últimos 50 años en la ciudad de El Coca? 4) ¿Cuáles son las dinámicas sociales a escala micro, de lo cotidiano y de las personas, que marcan la configuración hidrosocial de los ríos Payamino, Coca y Napo en la ciudad de El Coca (Puerto Francisco de Orellana)?; 5) ¿Cuáles son los factores determinantes en la configuración de la red hidrosocial en los ríos Payamino, Coca y Napo que influyen en la producción urbana que se encuentra en sus riberas?; 6) ¿Cuáles son las tipologías urbanas producen a escala de mosaicos urbanos, meso y macro escala, que reflejan las relaciones hidrosociales dominantes de la red hidrosocial de la cuenca del río Napo?

Hipótesis de estudio

En base a la problemática y la pregunta de investigación planteadas la presente hipótesis principal se plantea: La morfología urbana de la ciudad amazónica y portuaria de El Coca (Puerto Francisco de Orellana) es resultado de la configuración de los territorios hidrosociales y a su vez esta configura a los mismos estableciendo un relación simbiótica en la que el agua, es el elemento que permite lograr ya sea justicia social o un incremento de las desigualdades estructurales. El rol estructurante del agua se evidencia en la tipología de paisaje urbano que generan a lo largo de los ríos urbanos, siendo por ende, los paisajes la unidad de análisis que refleja la influencia de estas variables pero no implicando con ello, que su incidencia es exclusiva dado que los paisajes amazónicos se caracterizan por su diversidad e hibridación generada por procesos multicausales.

Las siguientes sub-hipótesis se plantean para reflejar a detalle los planteamientos de esta investigación:

- 1. La configuración de territorios hidrosociales, como espacios integradores de lo hídrico y lo social y al representar jerarquías, flujos, redes y paisajes que surgen de la relación río-ciudad y agua-sociedad (García-Estrada and Hernández-Guerrero 2020; Budds 2012) permiten observar los procesos que generan fragmentación territorial y la fractalidad urbana que se refleja en la forma urbana y suburbana de las ciudades y poblados de la Amazonía ecuatoriana (Arroyo-Rodríguez, Moreno, and Galán-Acedo 2017).
- 2. La forma urbana y suburbana constituida como una interface en la que se refleja la acción de la expansión urbana y el crecimiento urbano de las ciudades se ve estructurada por las relaciones hidrosociales y se refleja en la construcción de

tipologías de paisajes que se asocian tanto a los usos del agua (actividades dominantes), como a la accesibilidad (escasez) y a las significaciones y valoraciones del agua (fuente de vida) (Durán Díaz 2014b).

- 3. El control hídrico estudiado desde los actores sociales y los discursos dominantes en torno al agua permite construir un ciclo hidrosocial en el cual junto a los flujos del agua se evidencia en un paisaje urbano del agua asociado a las dinámicas sociales del territorio (von Medeazza 2006; Damonte Valencia 2015).
- 4. Los paisajes hidrosociales (fluviales y sociales) representan al ecosistema económico dominante del territorio en las áreas de influencia de los ríos, pero además evidencian otras economías y territorialidades alternativas basadas en nuevas formas de organización y procesos socioproductivos (Pérez and Zamora 2019).
- 5. El agua es un elemento coproducido físicamente y socialmente, tiene una naturaleza híbrida en la que las relaciones de poder y otras significaciones expresan la característica relacional de la sociedad y el territorio. Las relaciones hidrosociales son esas formas espaciales, materiales y simbólicas que toma el agua para las personas que habitan el río (Roca-Servat and Palacio Ocando 2019) y las mismas permiten evidenciar otras geografías alternativas (indígenas y campesinas además de urbanas) basadas en un modelo alternativo al modelo hegemónico extractivista predominante en la Amazonía ecuatoriana.

En este contexto, surgen varios escenarios de estructuración entre los que se destacan tres: I) el cambio en la diversidad de un paisaje, es decir su progresiva transformación de la heterogeneidad hacia la homogeneidad se asocia a los cambios de uso de suelo en el territorio y evidencia un proceso de fragmentación urbana que aumenta la fragilidad y vulnerabilidad al igual que detecta desigualdades generadas por el modelo de expansión basado principalmente en la construcción de expansores urbanos a servicio de actividades extractivas y el modelo neoliberal (Arroyo-Rodríguez, Moreno, and Galán-Acedo 2017; Angeoletto 2012). II) El agua como componente crítico de los paisajes culturales dinámicos e infraestructura del ecosistema y al ser identificado como un bien común y derecho humano (para las necesidades ambientales, usos sociales y comunitarios y el desarrollo económico) configura territorios hidrosociales saludables que reflejan a su vez la morfología urbana del territorio construido y los tejidos sociales y urbanos que reflejan la inclusión social y justicia espacial (Durán Díaz 2014b). III) El actual modelo de expansión urbana que favorece la acumulación capitalista

reproduce desigualdades espaciales y deteriora y fragmenta el territorio hidrosocial generando un paisaje urbano hídrico desigual, contaminado y de alta vulnerabilidad (Durán, Bayón Jiménez, and Bonilla 2020).

Objetivos

El objetivo general que guía la presente investigación consiste en analizar de qué manera la configuración de los territorios hidrosociales, más específicamente la red, el ciclo y las relaciones hidrosociales, actúan como elementos estructurantes de la forma urbana e influencian en el tipo de configuración morfológica urbana que se produce en las riberas de los ríos de la ciudad de El Coca (Puerto Francisco de Orellana), provincia de Orellana, Ecuador.

Los siguientes objetivos específicos direccionan las distintas aproximaciones en términos teóricos y metodológicos para la consecución del objetivo general. Además, estos objetivos cumplen la función de orientar cada uno de los capítulos empíricos de la investigación y determinar cada una de las escalas de trabajo empleadas en la aproximación a la producción urbana e hidrosocial amazónica.

- Plantear los referentes teóricos determinantes relacionados con el estudio de la urbanización amazónica ecuatoriana, los territorios hidrosociales y las morfologías urbanas por medio de una detallada revisión bibliográfica.
- Delimitar experimentalmente y contextualizar los territorios hidrosociales amazónicos a nivel regional para establecer una hoja de ruta para el análisis hidrosocial y morfológico amazónico y establecer tipologías preliminares de ríos urbanos existentes en la ciudad de El Coca (Puerto Francisco de Orellana).
- Identificar el rol estructurante de los ríos y el agua en el crecimiento y expansión de la ciudad, así como la influencia en la identidad, la memoria y la configuración colectiva del territorio amazónico hídrico en la ciudad de El Coca (Puerto Francisco de Orellana).
- Identificar y describir las relaciones hidrosociales encontradas en los ejes fluviales de los ríos Coca, Payamino y Napo y las prácticas materiales y subjetividades en torno al río en El Coca-Puerto Francisco de Orellana.
- Describir las dinámicas sociales encontradas en los componentes determinantes de la red hidrosocial que tienen influencia en la morfología de ciudad y caracterizar en

- tipologías urbanas la producción urbana asociada a los ríos: Payamino, Coca y Napo a escala micro en la ciudad de El Coca (Puerto Francisco de Orellana).
- Analizar geográficamente y por medio de las métricas del paisaje la meso y macro
 escala de la composición y configuración de los paisajes urbanos evidenciando con
 ello, las características relacionadas con la fragmentación, la justicia social y el
 derecho a la ciudad.

Presentación de la tesis

La presente tesis se compondrá de cuatro secciones: introducción, desarrollo y resultados, discusión, y conclusiones. La primera sección cumple la función de introducir la investigación y se compone de un resumen, una introducción al tema, la problemática de estudio, la pregunta de investigación, las hipótesis planteadas y los objetivos general y específicos. Para el desarrollo teórico y metodológico de la tesis se desarrollarán 5 capítulos. El primer capítulo es de corte teórico conceptual comprenderá el análisis de las variables de investigación de territorios hidrosociales y morfologías urbanas de la Amazonía ecuatoriana y los conceptos relacionados a las mismas como son los flujos del agua, el ciclo hidrosocial, las relaciones hidrosociales, el poder hídrico, los paisajes hídricos, el modelo de expansión urbana amazónica, la forma urbana, los modos de habitar y los paisajes urbanos.

El segundo capítulo corresponde a la contextualización del trabajo de investigación de tesis, el cual mediante la utilización de un análisis socio-espacial delimitará los territorios hidrosociales amazónicos y las redes hidrosociales a escala de centros urbanos y poblados de menor jerarquía urbana. Empleando los programas de sistema de información geográfica (SIG) Qgis y ArcMap de ArcGis, se realiza álgebra de mapas de capas espaciales correspondientes a datos socioeconómicos, ambientales, físicos y urbanos. Los siguientes 4 capítulos son de corte empírico y abordan primeramente un análisis morfogenético de la relación río-ciudad seguido de las tres escalas de estudio: micro, meso y macro de los territorios hidrosociales y la morfología urbana. La tercera sección se plantea una discusión final que integra los hallazgos encontrados con las teorías siendo de esta manera de carácter teórico y empírico. Finalmente, en la cuarta sección se presentan las conclusiones teóricas concernientes a los territorios hidrosociales y su influencia en la forma urbana de las ciudades amazónicas.

Enunciado teórico-metodológico

El eje central de la discusión teórica y metodológica de la presente investigación se encuentra en las configuraciones hidrosociales y morfológicas de las ciudades amazónicas ecuatorianas recurriendo para ello un enfoque de investigación mixto (cualitativo, cuantitativo y espacial) empleando al paisaje urbano como unidad de análisis y recorte territorial. Los fundamentos teóricos que guiaron esta investigación se basaron en la búsqueda de tesis, teorías y metodologías integradoras de los modos de vida humana y el ambiente y que mantienen como enfoque central al agua.

Centrando la discusión teórica en las cuestiones del agua y la urbanización, se abordan tesis como los modelos de urbanización en los que se inscribe tanto el territorio amazónico regional como el ecuatoriano. Igualmente, la discusión teórica y metodológica recurre a campos disciplinarios como la Ecología Politica Urbana⁶ (EPU) para abordar al agua como un elemento socionatural que forma parte, influye y se modifica por la sociedad. Además, desde la EPU se generó una base teórica y metodológica para plantear el estudio de los híbridos de la Naturaleza⁷ y su continuo "ensamblado-desensamblado-reensamblado" que funcionan a manera de una red rizomática⁸ (Swyngedouw 2011).

Para la construcción del marco teórico se desarrolló un modelo de análisis que permite reforzar y replantear las teorías y metodologías por medio de un ejercicio multiescalar. De esta manera, las aportaciones consideradas en esta investigación en la escala macro se relacionan con tres tesis que interactúan estrechamente entre sí: la urbanización planetaria⁹ o extendida¹⁰, las geografías del agua¹¹ y las territorialidades¹², todas ellas observadas a través del lente de la EPU, que además aporta con conceptualizaciones transversales relacionadas

_

⁶ Campo en el que confluyen diversas disciplinas con el objetivo de estudiar cómo los grupos sociales se relacionan con los lugares que habitan (Straccia and Pizarro 2019).

⁷ Tesis de Latour (1993) sobre cómo la Naturaleza y la Sociedad no existen y más bien el mundo se conforma de híbridos, ensamblajes o entramados que "son al mismo tiempo ambas cosas y ninguna" (Swyngedouw 2011, 44) ⁸ Hace referencia al proceso que sufre una red origen o "raíz" al modificarse y reestructurarse de forma "natural" convirtiéndose en una nueva red.

⁹ Tesis de Brenner (2013)

¹⁰ Tesis de Monte-Mór (1994)

¹¹ Desde la conceptualización empleada en la tesis doctoral de Durán Díaz (2014a)

¹² Desde la conceptualización teórica de Tapia (2004)

con el metabolismo urbano¹³ así como también permite ofrecer una mirada desde el Sur por medio de la Ecología Política Latinoamericana¹⁴ (EPLat).

La discusión central en la escala meso se enfoca en las dos variables de investigación: los territorios hidrosociales y la morfología urbana. Mientras que en la escala micro se abordan conceptualizaciones relacionadas con: el ciclo hidrosocial, el poder hídrico, la forma urbana y suburbana ribereña y los paisajes urbanos del agua. Siendo estos últimos los que revelan la influencia del agua en la construcción de ciudad y para efectos de la presente investigación se consideran como el resultado de la integración de los paisajes urbanos con los paisajes hídricos.

La construcción de la variable independiente cumple el objetivo de establecer las bases teóricas y descriptivas del territorio hidrosocial, por ende se ha desagregado en tres dimensiones: los paisajes del agua, los cuales permiten generar un análisis de la composición y la configuración de paisajes generados a lo largo de los ríos urbanos para analizar la fragmentación espacial, el ciclo hidrosocial, que evidencia las lógicas de poder detrás del control, gestión y manejo del agua y las relaciones hidrosociales, que se enfocan en las construcciones materiales, culturales, económicas y sociales en torno al agua.

Por su parte, la variable dependiente se ha construido con la finalidad de generar de forma geográfica evidencia de la influencia de los ríos y el agua en la construcción de hábitat, en la organización urbana y los modos de habitar y la cotidianidad. A pesar de que las dos variables ejercen influencia en la otra, se seleccionó estudiar la relación río-ciudad no con la finalidad de evidenciar los efectos de la urbanización en el ambiente sino más bien evidenciar que esta es una relación en la que la influencia es bidireccional y el río juega un rol determinante en la ciudad y su desarrollo urbano.

¹⁴ Basado en el trabajo investigativo de Alimonda (2017); (2016)

¹³ Basado en el trabajo investigativo de Delgado Ramos (2015)

Capítulo 1. Marco analítico: territorios y morfologías asociadas al agua

En el presente capítulo se aborda el estado del arte teórico relacionado con los territorios hidrosociales (variable independiente) y la morfología urbana (variable dependiente). Este debate teórico presenta tres niveles de profundidad: la escala macro, la meso escala y la escala micro para así dar respuesta al primer objetivo planteado: Plantear los referentes teóricos determinantes relacionados con el estudio de la urbanización amazónica ecuatoriana, los territorios hidrosociales y las morfologías urbanas por medio de una detallada revisión bibliográfica.

1.1 Fundamentos teórico-epistemológicos

El término territorio en la actualidad continúa manteniendo un tinte ideológico-político ya que se relaciona con elementos que definen a los Estados, al pueblo y la soberanía, es decir, el territorio es un elemento primordial teorizado y analizado principalmente con la finalidad de servir a la gestión política (A. Rodríguez 2017, 30; Herrera Montero and Herrera Montero 2020). El territorio desde el Sur ha sido abordado siguiendo esta necesidad práctica de la gestión política, pero así mismo se han generado reflexiones en torno a la característica inherente de los territorios del Sur relacionada con las luchas, las disputas y los dominios que estructuran y configuran el espacio según las transformaciones sociales dadas tanto por la una historia marcada por la colonialidad como también por la dominación capital (Herrera Montero and Herrera Montero 2020).

El territorio puede ser definido tanto por su población como por ámbitos socioculturales, por ende no es un elemento plano o estático, ya que en el caso del primer ámbito, en el confluir y disputar de las poblaciones movidas por las necesidades se construyen o transforman

interacciones en el espacio geográfico; en el caso de los ámbitos socioculturales, estos denotan diversidad que se refleja y reproduce a nivel de espacios, asentamientos y movilidades (Herrera Montero and Herrera Montero 2020). Analizado al territorio desde diversos enfoques se destacan dos: el primer enfoque, en el que el territorio es un recorte de la totalidad, es decir, presenta una superficie y un límite, siendo el límite la característica que lo vuelve identificable; y el segundo enfoque, en el cual el territorio es el espacio en el cual se desarrollan las relaciones sociales, y con ello, se implica una significación subjetiva del territorio (Tapia 2004). Esta dimensión relacional del territorio permite evidenciar desde relaciones de poder en las que el territorio es un espacio político y un escenario no de dicotomías sino de una multiplicidad de acciones y relaciones vinculadas a diversos aspectos que hacen del territorio un ente tangible de la identidad cultural y de las tensiones y convivencias simultáneas de diferentes agentes sociales.

Entonces, el enfoque del territorio como espacio que conjuga tanto lo objetivo como lo subjetivo permite la aproximación a las territorialidades, pues, la territorialidad está vinculada a los sentimientos tanto locales como supra locales que surgen de la cotidianidad y se organizan en el espacio y el tiempo (Tapia 2004). La territorialidad se entiende bajo esta teoría como un territorio con significación, el cual surge principalmente desde lo local, la escala de las personas, y en la cual el territorio se vive (territorio vivido) y se organiza (territorio organizado) (Tapia 2004). El territorio y sus territorialidades se vinculan a la producción del espacio social, ese que nace de los flujos y se contrapone en muchos casos a la producción en el espacio (Lefebvre 1974), ya que trasciende hacia la producción de un espacio nuevo que busca integrarse cada vez más al mercado y el capitalismo.

Entender el territorio como una configuración que se produce, y que responde a las interacciones de quienes lo habitan, controlan y disputan, permite entender la naturaleza compleja y móvil del mismo y entender que las delimitaciones no son posibles ya que el territorio forma parte de una red planetaria en la que el análisis de un sistema permite evidenciar cómo cambian y/o persisten las relaciones sociales que hacen del territorio y del espacio un instrumento para la producción capitalista. A su vez, a pesar de la escala planetaria de producción, se evidencia fragmentaciones en las que el espacio es dominado y controlado principalmente por estrategias implementadas por actores con voz y rostro. Ver al territorio como un conjunto de sistemas y redes permite tener una visión en la que no se divide lo urbano de lo natural, sino más bien ambos se consideran como elementos que interactúan no necesariamente de forma equilibrada sino más bien elementos que al instrumentalizarse se

emplean para el control generando relaciones de poder, resignificaciones y desigualdades territoriales (Erreguerena 2022).

Continuando con las geografías del agua, estas al igual que los territorios entendidos desde lo local hacia lo global, se construyen desde las significaciones y tienen influencia e impactos a escalas temporales y espaciales grandes, es decir, usualmente trascienden sus delimitaciones (Durán Díaz 2014b). Estas geografías al reflejar las prácticas y dinámicas que surgen en torno al agua se componen de distintos elementos urbanos, tanto tangibles como intangibles, como la relación histórica en la que el agua era un foco de vida (Durán Díaz 2014b, 56).

Esta relación histórica, ha sido modificada a medida que los asentamientos humanos se consolidaron en sistemas más complejos y las geografías del agua han evolucionado para representar la interacción sociedad-naturaleza a pesar de que esta suceda bajo condiciones menos óptimas (Durán Díaz 2014b, 57). Por ende, desde la teoría de las geografías del agua se permite visibilizar los lazos aún existentes entre rio-ciudad-personas. Además, las geografías del agua, ya sea al estudiar las problemáticas o paradojas del agua o la interacción entre la sociedad y el agua, continúan siendo un tema de discusión actual y de relevancia en la investigación geográfica (Fonstad 2013).

El estudio geográfico del agua permite tanto a los geógrafos como a los investigadores plantear interrogantes relacionadas con el agua desde la escala local hasta la global (Fonstad 2013), y por ello, es una teoría que se puede integrar a los estudios urbanos y los procesos de urbanización. Actualmente, el proceso de urbanización a escala de planeta se puede describir y analizar bajo la tesis de la urbanización planetaria, dada su aproximación tanto a los procesos de concentración como a los procesos de extensión de lo urbano (Brenner 2013; Angeoletto 2012).

Además, bajo la tesis de urbanización planetaria los procesos involucrados en la transformación socio espacial y socioambiental dan lugar a un desarrollo que se reproduce a distintas escalas, territorios, es decir, traspasa las fronteras urbanas (Brenner 2013). Siendo, estos límites borrosos entre lo urbano y rural los que muestran no solo la red sistémica que configura la urbanización sino también como el modelo capitalista produce y reproduce las desigualdades en el territorio a escala planetaria.

La conformación de una red urbana es el resultado de una urbanización que se extiende y forma un conjunto de centros urbanos que funcionan por medio de articulaciones entre sí. La red urbana amazónica se constituye como una red heterogénea con asociaciones similares y

singulares que conforman un sistema en el que el espacio geográfico, el ambiente y la sociedad se relacionan e influencian (Erazo Chalco 2017; Corrêa 2006). Esta percepción de la Amazonía como una red se alinea a la tesis propuesta sobre la urbanización planetaria y la urbanización extendida, ya que, lo urbano y lo rural pueden expresarse a diferentes escalas y se articulan entre ellos conformando un tejido urbano extendido (Pinho 2012).

Aunque el estudio de redes urbanas se basa en la articulación urbana, no implica necesariamente equilibrio, ya que una red urbana puede encontrarse conectada pero funcionar bajo lógicas de desequilibrio o desigualdad. En el sistema de ciudades latinoamericano, la estructuración de la red urbana ha cambiado en las últimas décadas pasando de ser una red aún en desarrollo (Chabrera 1992) ha ser un sistema complejo. Por lo tanto, partir del estudio de la teoría de las redes para observar cómo los poblados y ciudades trabajan como un conjunto de centros urbanos que es funcional y en que al mismo tiempo cada centro urbano se encuentra jerarquizado en función de su aporte a la red (Corrêa 2006), permite observar el posible cambio en las relaciones río-ciudad y el rol de los ríos urbanos y el agua en centros urbanos de distinta tipología urbana.

Finalmente, la discusión teórica y metodológica del presente trabajo se enmarca siguiendo lineamientos de la Ecología Política Urbana (EPU) ya que es un campo que integra la ecología y las ciencias sociales para estudiar los ecosistemas urbanos ayuda a describir la relación sociedad/naturaleza que se da de forma dialéctica en las ciudades (Angeoletto 2012). En la EPU, la urbanización es un proceso tanto social como ambiental en el cual se analizan las relaciones de poder existentes al distribuir los servicios medioambientales y los recursos naturales en el contexto urbano (Lukas, Fragkou, and Vásquez 2020). Así y gracias al enfoque multiescalar de la ecología política se abordan desde las micro especificidades de un espacio específico hasta los procesos macroeconómicos y estructurales de un territorio común (Lukas, Fragkou, and Vásquez 2020).

La EPU trae a discusión términos como "Naturaleza" y "Urbano", según Swyngedouw (2011) la naturaleza como término que engloba lo no humano pero también al ser humano es una contradicción y por ello, prefiere hablar de entramados socio-naturales pues estos híbridos de naturaleza y cultura son al mismo tiempo ambas cosas pero no se pueden dividir, es decir, que se puede pensar en la naturaleza y la cultura en su conjunto como un electrón, esta unidad es indivisible por lo tanto no se puede separar su estudio ni su concepción como dos elementos opuestos.

La ciudad amazónica ecuatoriana constituye una superposición de distintos sistemas, relaciones y jerarquías (Erazo Chalco 2017) y toma diversas formas que son parte de un ejercicio de poder, ocupación del espacio, apropiación de los recursos, tensiones, competitividades y diferencias con consecuencias directas en su organización urbana. Por ello, su urbanización se explica por medio de la existencia de una red urbana que a distintas escalas genera realidades sociales diversas (Erazo Chalco 2017). El análisis de esta red urbana no está completo si no se añade al estudio socio espacial, el estudio desde el ambiente, ya que, en un territorio de gran importancia ambiental, el estudio de la naturaleza y sus componentes estructurales como el agua, los bosques, el suelo, etc., suponen una aproximación completa y holística al territorio y sus territorialidades.

La Amazonía como un territorio periférico en continua urbanización, es en sí un territorio de alto dinamismo con hibridaciones. En esta región, lo urbano y lo rural operan como un sistema con transformaciones socioambientales y múltiples impactos (Ferraro, Zulaica, and Echechuri 2013, 21). Estas transformaciones al ser entendidas como procesos de movilización y metabolización de recursos naturales pueden ser analizadas por medio del estudio de la ecología urbana y la ecología del paisaje (Lukas, Fragkou, and Vásquez 2020).

La ecología urbana desde el entendimiento de las relaciones metabólicas y simbióticas entre el conglomerado urbano y el ambiente (Angeoletto 2012, 8), permite abordar territorios como la Amazonía ecuatoriana desde las interrelaciones, los flujos y la gestión de sus recursos, reconociendo los procesos sociales y ecológicos como un tejido que muestra la evolución de los paisajes de las ciudades (Angeoletto 2012, 6). Específicamente en los estudios sobre el agua, la ecología urbana permite visibilizar y cuestionar las significaciones colectivas del agua, los discursos que se emplean en la gestión y el control hídrico y otras formas de representar, significar y valorar al agua. En la Ecología Política Urbana las ciudades son "naturalezas socialmente producidas o socionaturalezas urbanas" (Bernabeu 2019, 179) y por ello permiten cuestionar e indagar las relaciones entre naturaleza y sociedad en el contexto urbano.

Adicionalmente, desde este enfoque se estudia al agua desde su control, discursos, y actores que la gestionan hasta los conflictos que se generan como resultado del control hídrico (Damonte and Lynch 2016). Por consiguiente, el agua trasciende a la disponibilidad física del recurso hídrico y se establece como un elemento esencial para el metabolismo urbano de las ciudades, pues el metabolismo de las ciudades se ve afectado cuando no existe una circulación permanente del agua tanto dentro como a través y fuera de la ciudad. Así mismo, el agua es

una cuestión de justicia social pues los mecanismos de control hídrico pueden generar exclusión, carencias y conflictos en los que la vida barrial y cotidiana se limita y con ello, el ejercicio del derecho a la ciudad (Swyngedouw and Bovarnick 1994). La urbanización del agua

Según Bottaro, Latta, and Sola (2014), el mundo es socionatural, y por ende las ciudades desde el enfoque socionatural, y se compone tanto de aspectos físicos como sociales y simbólicos. Entre los aspectos simbólicos se encuentra la representación del agua, las relaciones socionaturales, los lenguajes de valoración y los saberes, identidades y derechos reivindicados por los conflictos por el agua y estos aspectos permiten identificar la multiescalaridad de la politización del agua y sus efectos en el uso, gestión, distribución y protección de la misma.

Tomando lo anteriormente mencionado como base teórica, la urbanización es un proceso socioambiental metabólico en el cual se movilizan recursos naturales, como el agua y el suelo (de los cuales la ciudad es dependiente) con la finalidad de unirlos al sistema de circulación capitalista. Esta integración de los recursos naturales a la circulación del capital produce ambientes urbanos desiguales ya que se producen flujos metabólicos donde existen relaciones de poder y una organización social de los flujos que generan condiciones socioambientales desiguales para las poblaciones (Lukas, Fragkou, and Vásquez 2020).

1.2 Discusión teórica macro

La siguiente sección desarrolla una discusión de las teorías base relacionadas con el territorio, las territorialidades, las geografías del agua, la urbanización planetaria y la forma urbana de la ciudades amazónicas para enmarcar la investigación bajo las macro teorías que la sustentan.

1.2.1 Ecología Política Latinoamericana: El Sur es nuestro Norte

En las últimas décadas del siglo XX se comenzó a procesar la dimensión de la relación capital/naturaleza y con ello se consolidaron formas de apropiación y explotación de recursos naturales con efectos desconocidos. Es durante este periodo que comienza a utilizarse en Latino America el término ecología política (Alimonda 2017). La ecología política estudia los conflictos socio-ambientales y al mismo tiempo, el término designa un amplio movimiento social y político por la justicia ambiental que es más fuerte en América Latina que en otros continentes. Este movimiento lucha contra las injusticias ambientales en ámbitos locales, nacionales, regionales y globales" (Martínez-Alier 2014).

Debido al contexto amazónico y en oposición a marcos de la ecología política urbana que vinculan el estudio de la dinámica socionatural principalmente con los entornos urbanos (Swyngedouw 2004; Harvey 2018) se plantean marcos que traen a discusión las dimensiones rurales e incluso agrarias de la ecología política, es decir que frente a una posible centralidad de lo urbano se plantea deconstrucción de la relación urbano-rural haciendo uso del continuo urbano-rural para no descuidar la importancia de las áreas rurales y los patrones de uso de la tierra, como componentes cruciales para comprender las problemáticas socioambientales (Alimonda 2017, 2016; Martínez-Alier 2014). Además, dada la complejidad de los estudios amazónicos, el carácter multisituado de su población y la red urbana que se configura en la región la importancia de contar con un marco de estudios del Sur permite involucrar las dinámicas de poder, incluidos los problemas de desigualdad, justicia social y movimientos de resistencia de base, los cuales son esenciales para hacer eco y visibilizar las contestaciones territoriales amazónicas.

Según Martin and Larsimont (2014) la ecología política latinoamericana se encuentra definida por su carácter crítico lo cual a su vez se refleja en las resistencias de los pueblos frente al saqueo y la economía de rapiña¹⁵. De esta forma, se convierte en una construcción colectiva en las cuales el foco central son las relaciones de poder que han sido configuradas históricamente y son las mediadoras de la relación Sociedad/Naturaleza. La ecología política latinoamericana tiene un fuerte componente crítico y busca responder a los desafíos actuales reconociendo y rompiendo los presupuestos civilizatorios del modelo de desarrollo actual (Alimonda 2017).

1.2.2 Geografías del agua: De la naturaleza y sociedad a la identidad y el lugar

Al intentar abordar las geografías del agua primero surge la inquietud sobre la noción de Naturaleza y Sociedad. ¿Desde qué perspectiva se puede abordar a la naturaleza y la sociedad para pensarla, conceptualizarla y politizarla de manera que se pueda llegar a ofrecer soluciones a la situación socio-ecológica mundial actual? (Swyngedouw 2011, 41) Desde luego que recurrir al dualismo que separa la naturaleza y la sociedad en dos categorías concisas y bien definidas no es la opción puesto que con en ellas se pierde la complejidad e incluso el desorden innato de el mundo, las ciudades y las sociedades (Castree 2003a, 2003b;

¹⁵ De acumulación capitalista

Rocheleau and Roth 2007). "La actividad humana no puede considerarse externa a los proyectos ecosistémicos. Considerarla así no tiene más sentido que tratar de estudiar la polinización sin las abejas" (Harvey 2018, 241)

Además la separación de la Naturaleza y la Sociedad en un dualismo antagónico genera en el campo de la geografía una división disciplinar. Separando al mundo social del mundo natural, a la geografía humana de la geografía física (Whatmore 2002) se produce una fragmentación disciplinaria que a pesar de los esfuerzos metodológicos se continúa reproduciendo. La oposición de la Naturaleza y la Sociedad (Larsimont and Grosso Cepparo 2014). Por ello y para buscar contraponerse a la división dualista surgen las geografías híbridas. "El conjunto de cosas (humanas y no humanas) que pueblan el mundo está formado por híbridos de naturaleza y cultura que se multiplican incesantemente." (Swyngedouw 2011, 44).

El mundo es físico y humano de forma simultánea y así mismo los procesos son a su vez socionaturales (Budds 2011). Los estudios geográficos trascienden la extensión natural del espacio y abordan la relación entre naturaleza, sociedad y territorio; que desde la función se basa en las redes sociales, las redes de convivencia y las redes de establecimiento humano; y desde lo cultural estudia las formas en las que el espacio se ve ocupado, modificado, construido y organizado por la sociedad (Vertel et al. 2018). En este contexto, las geografías del agua se enmarcan como el estudio de los elementos hídricos que condicionan tanto el crecimiento como la forma urbana y las dinámicas sociales y culturales (Durán Díaz 2014b, 51), conformándose como un elemento de vertebración urbana.

De igual manera, al hablar de geografías del agua se abordan también las territorialidades navegantes, las cuales se relacionan con los sistemas territoriales urbano-ribereños (Bartoli 2018b). En un sistema territorial urbano-ribereño, las prácticas espaciales ribereñas vinculan fuertemente a la población local con los ríos aunque el contexto urbano actual mercantilice a las relaciones (Bartoli 2018b). Además, las geografías con dinámicas ribereñas tienen el potencial de ser un agente mediador y relacional con la ciudad.

En la Amazonía, el agua, el bosque y las ciudades se encuentran estrechamente conectados, al estudiar la configuración de la ciudad a partir de su estructuración en torno al agua, se evidencia como los ríos adquieren el rol de ser un marcador histórico de las transformaciones socioespaciales y un eje que estructura la vida (Durán Díaz 2014b). Por ello, en los estudios sobre las ciudades amazónicas y los procesos de urbanización es necesario reconocer esta asociación sinérgica entre los elementos de la naturaleza y la sociedad y los factores

determinantes que hacen que esta relación configure paisajes urbanos del agua o hídricos urbanos que reproducen inequidades, injusticia espacial, fragmentación, segregación o marginalidad.

1.2.3 Modelo de urbanización amazónico

Angeoletto (2012, 2), para hablar de la urbanización en el mundo comienza mencionando que "vivimos, indudablemente, en el Planeta Ciudad" y con ello hace referencia a como actualmente la población urbana representa a la mayoría de la población global y como lo urbano ha alcanzado una escala planetaria. En este contexto, la urbanización traspasa la idea de lo urbano como el área de las ciudades y abarca también las áreas circundantes y/o externas que se encargan de asegurar el procesos metabólicos de las ciudades (provisión de energía, materiales o recepción de desechos o residuos).

Similarmente a la idea de un planeta ciudad, la teoría de la urbanización planetaria de Brenner (2013), ayuda a visualizar a nivel global como existen dinámicas urbanas que se manifiestan en el territorio creando una urbanización con redes, jerarquías y relaciones que actúan a nivel planetario. Pero, ¿qué posición ocupa la Amazonía en esta urbanización planetaria? Rondón Ramírez (2017), considera que la Amazonía se ubica en la periferia del modelo de urbanización planetaria debido a que aunque ya es un territorio urbanizado también cuenta con una dispersión de comunidades nativas y centros poblados menores que aún se consideran como rurales.

De igual manera, Côrtes, De Oliveira D'Antona, and Ojima (2020) menciona que el fenómeno urbano observado en el territorio amazónico corresponde a un modelo de urbanización extendida, ya que este modelo es el que permite contemplar la multidimensionalidad de la urbanización y la hibridación de las dinámicas amazónicas. El modelo de urbanización extendida en la Amazonía genera una necesidad de una escala de estudio más fina y específica (Dal'Asta, Amaral, and Monteiro 2014). En este modelo se producen nuevas ruralidades y urbanidades que se conectan con su contrario dicotómico (las ruralidades con el núcleo urbano y las urbanidades con la zona rural) manteniendo un vínculo de soporte socioeconómico, cultural, social, etc., generando así una extensión operacional de los paisajes de la urbanización.

Estos modelos de urbanización se acoplan a lo observado en la Amazonía, ya que en ella funcionan lógicas particulares y complejas que difícilmente se encuentran en otras regiones, por ejemplo la presencia de población flotante en campamentos petroleros o las dinámicas de

colonización interna aún vigente en la región amazónica norte (Jarrín Valladares, Tapia Carrillo, and Zamora 2017) o la diversidad de tipologías urbanas encontradas a lo largo de la región (Cabrera-Barona et al. 2020).

En la Amazonía se observa tanto en ciudades que se integraron a la realidad occidental y son actualmente centros urbanos altamente urbanizados e industrializados como Manaos y Belem en Brasil, Iquitos en Perú (tres ciudades con la tasa de crecimiento más alta en cada país) o como Lago Agrio y Coca en Ecuador; como también paisajes diversos que combinan principalmente bosque, llanura y manglares, ciclos de la naturaleza, formaciones sociales complejas, presencia de poblaciones nativas y procesos de urbanización asociados al extractivismo, la explotación de recursos y el modelo de desarrollo capitalista (A. Cardoso et al. 2020).

La actual etapa del capitalismo acentúa y reproduce los procesos mercantiles tanto de bienes comunes como de la naturaleza a nivel global (A. Rodríguez 2017, 3). De esta manera, la acumulación capitalista influye también en la configuración social del agua, generando así nuevas conformaciones hidrosociales que reflejan el cambio en la interacción de la naturaleza y la sociedad (A. Rodríguez 2017). En sí, la urbanización de la región amazónica es un proceso aún en desarrollo y que responde a varias causalidades. Por ende, el ofrecer luces sobre las distintas facetas de este modelo de urbanización permite generar una mejor y mayor comprensión de los procesos que transforman y guían la producción urbana.

1.3 Discusión teórica meso

En la discusión teórica a escala meso se abordan las dos variables de estudio: territorios hidrosociales, como variable independiente y morfología urbana amazónica como la variable dependiente.

1.3.1 Territorios hidrosociales

Para concretar geográficamente los lineamientos y principios de la EPU relacionada específicamente al agua se emplea el término "territorio hidrosocial" (Sanchis Ibor and Boelens 2018). Entendiendo como territorio hidrosocial a la configuración urbana que refleja los procesos urbanos e influye en la producción urbana (Durán, Bayón Jiménez, and Bonilla 2020; Roca-Servat and Palacio Ocando 2019; Rondón Ramírez 2017; Oliveira 2018), al territorio imaginario y materializado que forma parte de una red multiescalar interactiva y espacial de diversos flujos y dinámicas socio-naturales que surgen de las relaciones desiguales de poder en torno al agua y el ser humano y la sociedad (Sanchis Ibor and Boelens 2018; Del

Rosario 2021). Sociedad, territorio y poder se convierten en los tres elementos que interactúan en la concepción del territorio y lo hidrosocial.

Debido a que en el agua se encuentran de forma internalizada relaciones sociales y políticas, estas mismas relaciones transforman al agua en un instrumento, es decir el agua es producida y reconfigura al territorio (Panez Pinto 2018). Gracias a esta producción del agua y desde el enfoque de los territorios hidrosociales se puede generar una aproximación al territorio amazónico no negando las delimitaciones políticas sino más bien combinando el espacio social, el espacio físico o natural y el espacio político del agua (Rondón Ramírez 2017). Al recurrir a una delimitación dinámica del territorio la posición ontológica investigativa asume que el territorio vive en constante cambio y transformación y que por consiguiente sus límites y demarcaciones son un recorte territorial de un conjunto mayor y complejo más que un límite fijo e inmóvil.

Adicionalmente, partiendo desde la primicia de la existencia de un pluralismo territorial, se entiende que en el territorio existe una confrontación y superposición de territorios (Panez Pinto 2018), es decir, existen varios "territorios en un territorio", siendo los territorios hidrosociales en este caso un territorio entre una variedad de diversos territorios que conforman la red planetaria, ya que se forman según los modos de habitar, las significaciones del agua, los mecanismos de control hídrico/social y muchos aspectos más. Un territorio hidrosocial es también definido como un campo de fuerzas en el que se crea una lucha de poder y un proceso de dominación y apropiación del agua (Del Rosario 2021).

Un territorio hidrosocial es un espacio donde las relaciones y percepciones de pertenencia e identidad de los pobladores locales se vinculan al cuerpo de agua y por ende, genera una gestión y protección por parte de los mismos (Manosalvas 2015). Un territorio hidrosocial se conforma por la integración del espacio físico de una cuenca hidrográfica y el espacio social que surge en torno a esta (Rondón Ramírez 2017; Córdova, Contreras-Escandón, and Marcelo 2020) y pueden ser identificados a través de dos elementos: el ciclo hidrosocial, también denominado como red hidrosocial, y los paisajes del agua (Rondón Ramírez 2017).

El ciclo hidrosocial y los paisajes del agua permiten que el estudio de los territorios abarque a la naturaleza y la sociedad y establecen así una noción de cuencas hidrosociales o "vivas". Las cuencas vivas se caracterizan por su dinamismo, flexibilidad, adaptabilidad e hibridación que surge como resultado de la combinación de procesos físicos y sociales asociados a los ríos y el agua (Koenig 2020). De esta forma una cuenca viva es un territorio hidrosocial, debido a

que un territorio hidrosocial busca comprender las relaciones complejas y estrechas que las personas mantienen con el agua así como las dinámicas sociales (sean estas conflictivas o solidarias) que se generan por los distintos usos del agua (Besteiro 2020).

En el territorio hidrosocial, el ciclo hidrosocial se relaciona con la circulación y los flujos del agua y las relaciones de poder (Roca-Servat and Palacio Ocando 2019; García-Estrada and Hernández-Guerrero 2020). La circulación involucra la captación, reserva y desecho del agua, en otras palabras, la gestión del agua. Este proceso involucra diferentes agentes y actores además de aspectos como la cobertura, cantidad, calidad y el control del agua; los cambios en uso de suelo; y los conflictos sociales o entre actores (Rondón Ramírez 2017). El ciclo social como una red hidrosocial se define gracias a el sistema completo y complejo de acceso y escasez del agua, es decir involucra decisiones políticas, actores que se benefician o se excluyen, los intereses económicos, y las relaciones de poder multiescalares (Fragkou et al. 2022).

El ciclo hidrosocial puede ser analizado según la teoría en la que se basa: la primera relacionada con la filosofía política, en la cual se estudia la interacción de la gestión del agua, las normas sociales y legales, el Estado y el ambiente para configurar el acceso al agua; y la segunda basada en la ecología política urbana, en la cual se lo entiende a partir del flujo del agua y las relaciones de poder (García-Estrada and Hernández-Guerrero 2020, 271). Además, el ciclo hidrosocial tiene una dimensión espacial y una temporal además de las formas de flujos permitiendo por medio de estas dimensiones capturar tanto el sistema formal como el sistema informal de abastecimiento del agua potable (Fragkou et al. 2022).

En el ciclo hidrosocial, los flujos del agua o también denominados hídricos se asocian principalmente con el uso del agua y los procesos de gestión del agua y adicionalmente, involucran a los flujos de capital y poder; es decir, el flujo del agua en el ambiente físico sumado a las manipulaciones de los actores sociales (Roca-Servat and Palacio Ocando 2019). De esta manera, surge la complejidad de los flujos hídricos, pues pueden llegar a revelar por medio de su estudio realidades donde el control hídrico perpetúa o reproduce desigualdades. De esta manera se conforma y dado que el control se refleja en los paisajes hídricos, estos se reflejan además de las desigualdades y la injusticia, la acumulación de capital (Budds 2011).

Igualmente, el estudio de los flujos hídricos revela la manipulación de la naturaleza del agua con fines desarrollistas y oportunistas puede revelar escenarios de opresión y dominación hídrica (García-Estrada and Hernández-Guerrero 2020, 271). Por ello, los cambios en los

flujos de agua son relevantes al construir el ciclo hidrosocial debido a que este cambio tiene repercusiones en la accesibilidad al agua y la justicia hídrica (García-Estrada and Hernández-Guerrero 2020, 288).

Complementariamente a los flujos del agua, los flujos del poder evidencian el control hídrico, los conflictos sociales asociados a este y la problemática del agua. Los modos de control del agua o relaciones de poder pueden transformar las geografías del agua o formar nuevas condiciones como: su presencia o ausencia, su abundancia o escasez, su protección o contaminación, y generan con ello, luchas que se traducen de luchas por el agua a luchas por la vida (von Medeazza 2006). El poder hídrico dentro del territorio hidrosocial es determinante en la transformación de la forma física de un lugar.

De forma paralela al estudio del ciclo hidrosocial enfocado en la dinámica de los flujos del agua, los paisajes del agua estudian y reflejan la naturaleza híbrida del paisaje (Rondón Ramírez 2017, 94). Los paisajes del agua se aplican para comprender las interacciones entre: procesos físicos, prácticas materiales y construcciones ideológicas del valor del agua (Rondón Ramírez 2017; Roca-Servat and Palacio Ocando 2019), surgen como resultado de la circulación entrelazada de agua, poder y capital, y según la escala, reconstruyen relaciones de poder dominantes en el territorio.

Un paisaje del agua es una imagen que las personas asocian con las formas del agua que los rodean (Rondón Ramírez 2017). En la Amazonía los paisajes del agua permiten evidenciar las formas de producción, circulación y el consumo que conforman la red urbana, natural y social. Y además al ser multiescalares, estos no fragmentan al territorio amazónico, lo cual es esencial para comprender la situación de los sistemas territoriales amazónicos (Bartoli 2020b).

La articulación de las poblaciones, los flujos del agua y el poder hídrico en el ciclo hidrosocial, las relaciones ecológicas (hidrosociales), la infraestructura hídrica, las políticas de gestión del agua (discursos del agua), las prácticas materiales y culturales y los actores sociales, genera la materialización de los territorios hidrosociales (Pérez and Zamora 2019, 4). Al combinar los paisajes del agua con el ciclo hidrosocial se logra una aproximación holística al territorio y las cuencas.

Los flujos y la circulación del agua al plantear dinámicas híbridas permiten que el ciclo hidrosocial sea una red que categoriza y jerarquiza al territorio según la escala urbana de estudio, mientras los paisajes del agua al representar las prácticas y significaciones que se le

otorgan al agua construyen un simbolismo y una apropiación e identidad colectiva que influye tanto en el ciclo hidrosocial como en la disputa, protección y valoración del agua (Rondón Ramírez 2017).

En este contexto (físico y social), el agua llega a tener diversas significaciones (Durán Díaz 2014b). Puede ser un bien público, un bien económico o mercancía, un elemento de la cosmovisión, como también un objeto de poder (von Medeazza 2006). Por ello, es relevante construir un marco teórico y metodológico basado en la configuración de los territorios hidrosociales, ya que está al considerar el aspecto físico y social del agua, analiza también los procesos de esta como fuente de vida y cultura y como elemento de poder, conflicto de intereses y luchas y justicia, siendo esta capacidad la que permite aproximarse a territorio como la Amazonía desde un enfoque multicausal y multiescalar.

1.3.2 Morfología urbana

La morfología urbana estudia la forma física de las ciudades y por ello requiere del estudio de los actores y procesos determinantes en la construcción y moldeamiento de esta forma urbana (Oliveira 2018). Los estudios sobre morfología urbana evolucionaron desde el estudio del abordaje de tipo morfológico por parte de arquitectos italianos hasta los abordajes históricogeográficos, la sintaxis espacial y los autómatas celulares; en los cuales se comienza a tener un enfoque desde distintas disciplinas como la historia, la geografía y la sociología (Oliveira 2018). Estos primeros marcos de referencia de morfología urbana europeos se fundamentan en las escuelas de diseño y el movimiento moderno, lo cual es necesario reconocer para adaptar este marco al de las redes de ciudades y poblados con contexto latinoamericano y amazónico.

El estudio de la morfología urbana supone siempre una atención a los elementos básicos que configuran el tejido urbano y a los mecanismos de transformación de las estructuras. Exige a la vez una aproximación estructural, es decir, que tenga en cuenta los diversos elementos componentes y sus interrelaciones, y diacrónica, es decir histórica, que dé cuenta de las transformaciones (Capel 2002, 20).

La morfología urbana estudia al espacio construido y por consiguiente es un reflejo de la organización económica y social, de las estructuras políticas y de los objetivos de los grupos sociales dominantes (Capel 2002). Una de las dimensiones de la morfología urbana se relaciona con la morfogénesis, la cual estudia tanto el conocimiento de la configuración física del espacio (construcciones y vacíos, infraestructuras, usos de suelo, elementos

identificadores, y carga simbólica) además de las fuerzas sociales, económicas, culturales y políticas que influyen en la configuración y transformación urbana (Capel 2002). Así mismo, la morfogénesis es una herramienta que permite representar la ciudad y comprender los elementos urbanos y socionaturales que son parte de su historia (de Tomas Medina 2021).

Debido a que la morfología urbana amazónica generalmente toma distintas formas, desde campamentos temporales o áreas mineras, hasta ciudades consolidadas y comunidades ribereñas (Amaral et al. 2013, 368). Los patrones de ocupación en este mosaico de formas revelan micro-dinámicas urbanas con diferente temporalidad y que coexisten en forma de expresión urbana (Amaral et al. 2013). De esta forma, los patrones de ocupación territorial corresponden a una porción pequeña del territorio en la que se evidencia una combinación de atributos sociales, económicos, físico-construidos y naturales comunes en su unidad.

Complentariamente, otra de las expresiones de la morfología urbana es la centralidad, misma que a manera de elemento regulador evidencia las dinámicas de la ciudad (Lima and Rolim 2022); en el caso de las ciudades fluviales generalmente la centralidad se genera a partir del frente de agua. Por ello, es necesario establecer también una conexión entre morfología urbana y medio ambiente que permita abordar las geografías económicas, culturales e históricas vinculadas a la relación naturaleza-sociedad (Duarte 2021).

La morfología urbana amazónica es diferente a la encontrada en otras ciudades, así mismo, la cualidad urbana fluvial de las ciudades influye en la forma urbana que toma la ciudad. En el caso de la Amazonía Brasileña se encuentra estudios como el de Bartoli (2018a) en el cual el sistema territorial urbano-fluvial genera una morfología caracterizada por la formación de barrios extensos a manera de nodos que permiten las actividades de economía dual, es decir multisituadas en el campo y la ciudad. Adicionalmente, Bartoli (2022) menciona también como es necesario una análisis de redes de diversa naturaleza y temporalidad al estudiar la morfología de ciudades amazónicas fluviales, pues el proceso estacional de los ríos determina la producción y los flujos hidrosociales que marcan a la ciudad.

Además, estos patrones urbanos y suburbanos se representan en la subdivisión de las parcelas, por lo cual, presentan una gran variedad de geometrías y dimensiones (Oliveira 2018, 18) esta subdivisión o parcelación puede generar una fragmentación espacial cuando se presentan procesos dramáticos como la acelerado y exponencial aumento poblacional (Bilsborrow, Barbieri, and Pan 2004). Como ya se mencionó, el proceso de urbanización amazónica fue un proceso acelerado y de explosión tanto demográfica como de ocupación urbana, por ende, es relevante analizar las transformaciones que han sufrido los paisajes urbanos para evidenciar

patrones de crecimiento y de expansión urbana relacionados directamente con la forma física de la ciudad y el tejido urbano.

A pesar de ello, para la Amazonía es necesaria una adaptación de los modelos europeos de morfología urbana, ya que en estos las ciudades cumplían con principios como la completa urbanización e industrialización, una marcada base catastral y/o alta presencia de propiedad privada, características que son contrastivas con la realidad amazónica (A. Cardoso et al. 2020). Las ciudades y poblados amazónicos se caracterizan por su hibridación y heterogeneidad (Cabrera-Barona et al. 2020; Bayón 2019), en las que se combina: bosque, agua, pueblos indígenas, áreas protegidas, colonizaciones, paisajes extractivos, población flotante, etc., es decir, auténticos "laboratorios" dinámicos lo cual hace del estudio morfológico un estudio complejo y difícil (A. Cardoso et al. 2020, 2).

De esta manera es necesario adaptar el marco de morfología hacia uno que permita reflejar al territorio amazónico por medio de la observación de la evolución (morfogénesis) de las ciudades y la transformación de las redes urbanas amazónicas (A. Cardoso et al. 2020). Además, debido a que una de las cualidades de la urbanización amazónica es su acelerada expansión urbana y explosivo crecimiento poblacional (Jarrín Valladares, Tapia Carrillo, and Zamora 2017), descritos como componentes del fenómeno de implosión/explosión urbana (Bayón 2019) que incide en la dispersión/concentración urbana, se debe abordar el estudio sobre la forma urbana y suburbana amazónica desde los procesos de crecimiento de las ciudades. Además, los procesos de crecimiento urbano y la expansión urbana principalmente en los bordes o periferias son los procesos que fragmentan la morfología del paisaje natural (Vilela and Moschella 2017, 534).

En el contexto amazónico, la forma urbana se remonta a los primeros registros realizados por los viajeros, en los cuales se observan principalmente paisajes urbanos relacionados con los asentamientos de las misiones o de colonizadores a lo largo del sistema fluvial de los ríos (A. Cardoso et al. 2020). En la actualidad, la red fluvial sigue siendo parte de la configuración de las ciudades amazónicas y la relación de interdependencia entre el agua y la sociedad aún se refleja en los ejes de crecimiento de las ciudades.

Actualmente, la dispersión o concentración morfológica de las ciudades amazónicas refleja los acelerados procesos de ocupación de las periferias (Bartoli 2020a, 383), pero adicionalmente en la Amazonía la ocupación territorial es un proceso delicado debido a la vulnerabilidad del bioma amazónico y su gran riqueza en biodiversidad (Cuvi 2016). El

crecimiento descontrolado y poco planificado de las ciudades amazónicas conlleva a grandes pérdidas ecológicas, sociales, culturales y económicas.

De esta manera, el estudio de la morfología urbana en el contexto amazónico involucra el estudio de no solo la forma urbana y suburbana resultante, pero también involucra al tejido urbano construido de la superposición de diversos procesos simultáneos y los paisajes urbanos amazónicos donde se representan tanto la interacción compleja de elementos humanos con no-humanos como las dinámicas históricas, ambientales y sociopolíticas (Luguaña 2018). Así, los paisajes amazónicos se pueden constituir como un análisis temporal de la evolución de la morfología urbana como de los territorios hidrosociales.

1.4 Modelo de análisis metodológico

En la siguiente tabla se muestran los conceptos generales sobre los que parte esta investigación, así como también las variables empleadas y sus componentes teóricos e indicadores que permitirán su medición y evaluación.

Tabla 1.1. Modelo de análisis metodológico

Conceptos generales	Variables	Dimensiones Subdimensiones		Indicador	Escala Urbana/hídrica	Enfoque	Fuente
	Harvey 1996; Latour 2004; Angell 2019; Pérez y Gasca 2019)	Paisajes del agua (Meerganz Von Medeazza 2005; Swyngedouw 2004; Harvey 1985; Larsimony Y Grosso 2014; Roca- Servant y Ocando 2019)	Estructura (composición + configuración) (Ortiz-Báez, Cabrera-Barona Y Bognert 2021; Arroyo-Rodríguez, Moreno y Acedo 2017)	Composición del paisaje parches + corredores + matrices de los usos del agua.	Ciudad/red de ríos	Espacial	SIG y Fragstat e imágenes satelitales landsat Datos de fuente primaria
Ecología del paisaje y ecología urbana (Forman 1995; Berque ; Ortiz-Baéz. Cabrera-Barona		hidrosociales (Ramirez 2017; Roca- Servat y Ocundo 2019; Durán, Bayón y Bonilla (Ramirez 2017; Bartoli (Ramirez 2017; Bartoli Villary Hernández 2016)		Diagrama de flujos del agua: entrada y salida del acceso al agua + tipo de fuente del agua + alcance del servicio de agua potable y saneamiento	Barrio/rio	Mixto	GAD parroquial/municipal + censo de población y vivienda -inec 2010
Y Bogaert 2021; Di Bernardo 1996; Newell Y Cousins 2015; Arahuetes, Villar Y Hernández 2016) Geografías del agua (Vertel et al. 2018; Díaz 2014) Territorio y		y Durán 2012; Hommes y Boelens 2017; Larsimony y Grosso 2014)	Poder hídrico (Damonte-Valencia 2015, Meerganz Von Medeazza 2005; Swyngedouw 2004; Harvey 1985; Larsimony y Grosso 2014)	Demanda de agua por industrias extractivas: relaciones de poder desiguales en torno al agua	Barrio/rio	Cuantitativo	Fuentes secundarias, GAD parroquial/municipal Fuentes secundarias
territorialidades (Tapia 2004; Vela-Almeida et al. 2020; Lefebvre 1991; Labour 1993; Harvey 1985; Swyngedouw 2004) Urbanización		Relaciones hidrosociales Roca-servant y ocando 2019; budds y hinojosa 2012)	Construcciones hidrosociales (Luguaña 2018; Budds y Hinojosa 2012)	Cartografía de prácticas materiales y culturales en riberas de ríos: modos de habitar y dinámicas urbanas y relaciones hidrosociales: agua-minería, territorio, alimentación, resistencia, etc.	Ribera/persona	Mixto	Fuente primaria
Extendida o planetaria (Brenner 2013; Correa- Cortes, D'antona y Ojima 2020) Urbanización amazónica		Morfogénesis (Olviera 2018; Capel 2002; Chavez García 2018)	Vertebración urbana (Durán Diaz 2014; Calvino 1972; Prominsk 2012i; Laureano 2001)	Análisis morfogenético: evolución de la ciudad y transformaciones de que la relación río-ciudad ha sufrido con el tiempo	Ciudad/red de ríos	Mixto	GAD de Orellana, fuente primaria de historiadores
(Dal Asta, Amaral y Vieira 2017; Da Costa y Rosa 2017; Bayón 2019) Red urbana amazónica			Estructura ribereña (Heredia 2014: Erazo-Chalco 2019: Zarate 2019: Cabera- Barona Et Al. 2020)	Patrones de subdivisión de la tierra y constitución del hogar: fincas, campamentos, comunidades, etc.	Barrio/rio	Espacial	Imágenes satelitales
(Heredia 2014; Marchi Et Al. 2017; Porto-Gonçalves 2017; Erazo-Chaleo 2019; Zarate 2019, Fearnside 2015; Cabrera-Barona Et	Morfología urbana (Marchi, Pappalardo y Codato 2017; Porto- Gonçalves 2017; Barbieri, Mont- Mór y Bilsborrow 2009; Bayón Et Al. 2020; Parrado-Rodríguez, Cevallos-Aráuz y Arias-Álvarez 2018)	Forma urbana (Mejia 2020; Capel 2002; Goerlich 2013; Serrano Y Duran 2020)		Índice de compacidad: fragmentación espacial (número de polígonos, área de polígono principal)	Barrio/rio	Cuantitativo	Imágenes satelitales + SIG
Al. 2020)				Indicador demográfico (grado de urbanización + coeficiente gini + proporción de sexos)	Ciudad/red de ríos	Cuantitativo	Censo de población y vivienda - INEC 2010
				Características de edificación: número de pisos, materialidad, perfil urbano	Ribera/vivienda	Mixto	Datos de fuente primaria
		Paisajes urbanos (Bottaro, Latta y Sola 2014; Stahl 2015; Ortiz- Baéz, Cabrera-Barona y Bogaert 2021; Pinho 2012; Larsimony y Grosso 2014)	Estructura de los paisajes urbanos (modos de ocupación) (Pelayo y Gazca 2019; Rodriguez Sánchez 2017; Swyngedouw 2004; Larsimony y Grosso 2014)	Configuración del paisaje diversidad, porcentaje y similitud del paisaje patrón morfológico dominante (compacto, difúso, crecimiento de baja densidad, franja urbana, "salto de rana", archipiélagos)	Ciudad/red de ríos	Espacial	Información de paisajes hídricos

Fuente: Elaborado por la autora con información del trabajo de campo

1.5 Discusión teórica micro

En esta sección se aborda las dimensiones teóricas e indicadores de las dos variables: territorios hidrosociales y morfología urbana amazónica.

1.5.1 Flujos del agua y poder y paisajes del agua: La ciudades de agua en tus ojos¹⁶

Al desagregar el ciclo hidrosocial y los paisajes del agua a nivel de subdimensiones se encuentran conceptos relacionados a: los flujos del agua, los flujos de poder y los elementos y configuración de los paisajes hídricos.

En relación a lo mencionado de forma general en la discusión teórica meso, los flujos del agua al estar enmarcados en un estudio hidrosocial son primeramente un flujo híbrido es decir, en el los procesos de gestión hídrica (captación/entrada, consumo y desagüe/salida) se vinculan con el aspecto social de su accesibilidad (García-Estrada and Hernández-Guerrero 2020), por ello este componente del ciclo hidrosocial no puede desvincularse al estudio de los flujos de poder, pues en su combinación reside su naturaleza híbrida o hidrosocial. Los cambios en los flujos de agua debido a los intereses socio-políticos o económicos repercuten no solo en la accesibilidad del agua sino también en el estrés en el ciclo hidrosocial (García-Estrada and Hernández-Guerrero 2020, 291).

Este estrés en el ciclo hidrosocial se evidencia a su vez en la crisis del agua y los discursos que surgen en torno a ella, como es el caso del discurso de escasez construido política y económicamente como una forma de control hídrico (von Medeazza 2006, 135).

Swyngedouw (2004), menciona sobre el control hídrico: "si únicamente aquéllos que tienen el poder controlan el agua, y aquéllos que tienen agua manipulan a los que tienen el poder, entonces aquéllos que no tienen poder no tienen agua" (Swyngedouw 2004, 61).

De esta manera, se infiere que los flujos de poder hídrico se asocian a los flujos de capitales que permiten la construcción de infraestructuras y la consecución de intereses privados, y esto a su vez implica la manipulación del flujo de agua por diversos actores sociales para controlar y adquirir propiedad sobre la misma (Rondón Ramírez 2017). Las estrategias para el acceso del agua por parte de diferentes actores incluyen tensiones y conflictos con grupos de poder,

-

¹⁶ Fragmento del poema del chileno Raul Zurita, 2007, la cual hace alusión a la esencia oculta y cambiante de las ciudades, lo líquido frente a lo sólido. El reflejo como una forma de paisaje en capas.

lo cual se refleja en las relaciones de poder en los flujos del agua que demuestran la naturaleza politizada de su gestión (Rondón Ramírez 2017).

"Las relaciones asimétricas de poder socioeconómico y geopolítico inciden en la transformación metabólica del agua hasta que ésta se convierte en urbana." (von Medeazza 2006, 134). Por ello, el agua urbana y en específico el poder hídrico se pueden mediar a través de los conflictos sociales. Las relaciones sociales de poder se vinculan estrechamente con el proceso de acumulación de capital y debido a que el agua es esencial para este último, se convierte en un recurso estratégico que los grupos de poder buscan controlar (Budds 2011).

Los paisajes del agua componen un mosaico de elementos morfológicos con implicaciones funcionales, entre estos componentes se encuentra el estudio escalar de parches, corredores, matrices y mosaicos planteado desde el enfoque de la ecología del paisaje (Ortiz-Báez, Cabrera-Barona, and Bogaert 2021). Las relaciones entre diferentes mosaicos del agua permiten observar las lógicas simbólicas y sociales detrás de los flujos del agua, los flujos de poder y los flujos de capital (Rondón Ramírez 2017). En un mosaico, el parche se relaciona a la unidad mínima de análisis que presenta características homogéneas; los corredores son en cambio los elementos lineales, como los ríos y vías, que contribuyen a la conectividad del paisaje; la matriz, es la unidad de mayor escala con características homogéneas y se compone de la agrupación de los parches y corredores de un mismo tipo (Ortiz-Báez, Cabrera-Barona, and Bogaert 2021).

1.5.2 Forma, expansión y evolución urbana amazónica

La morfología urbana amazónica generalmente toma distintas formas, desde campamentos temporales o áreas mineras, hasta ciudades consolidadas y comunidades ribereñas (Amaral et al. 2013, 368). Los patrones de ocupación en este mosaico de formas revelan micro-dinámicas urbanas con diferente temporalidad y que coexisten en forma de expresión urbana (Amaral et al. 2013). Los patrones de ocupación territorial corresponden a una porción pequeña del territorio en la que se evidencia una combinación de atributos sociales, económicos, físico-construidos y naturales comunes en su unidad.

Además, los patrones se representan en la subdivisión de las parcelas por lo cual, presentan una gran variedad de geometrías y dimensiones (Oliveira 2018, 18) esta subdivisión o parcelación puede generar una fragmentación espacial cuando se presentan procesos dramáticos como la acelerado y exponencial aumento poblacional (Bilsborrow, Barbieri, and Pan 2004). Desde este enfoque temporal-histórico basado en la morfología urbana, los

patrones de ocupación territorial amazónica ilustran los procesos inherentes a la urbanización amazónica como también los cambios en los paisajes hídricos.

Por otro lado, los cambios en el uso de suelo representan la huella de la urbanización y las actividades antrópicas, principalmente aquellas que generan deforestación y aumento de las fronteras urbanas y/o agrícolas o de las tierras para uso urbano (Mejía 2020; Bilsborrow, Barbieri, and Pan 2004, 637). Además, los usos de suelo conforman una métrica de la morfología urbana dado que sus modificaciones inciden directamente en la configuración urbana; es por ello, que los usos prescritos de suelo desde una lógica de arriba hacia abajo generalmente producen fragmentación tanto social como espacial (Oliveira 2018).

A pesar de su relevancia, los usos de suelo por sí solos no reflejan la realidad de la configuración espacial y urbana de las ciudades, por ello, se necesita complementar este estudio con los procesos determinantes que generan estos cambios, ya se la propiedad de la tierra, las políticas urbanas implementadas o situaciones como las migraciones masivas, inundaciones, etc. El estudio morfológico supone analizar tanto los elementos básicos que configuran el tejido urbano como también los mecanismos que transforman a las estructuras (Capel 2002).

La morfología urbana también se ve reflejada en los paisajes urbanos ya que estos se generan de la transformación de la naturaleza en conjunto con la ocupación humana en un territorio determinado (Vilela and Moschella 2017, 533). El paisaje es al mismo tiempo una representación y una realidad física marcada por las dinámicas históricas y socioculturales del lugar, y puede ser por lo tanto, percibido como interpretado por medio de significaciones, construcciones, imágenes o símbolos generados tanto por individuos como por colectivos (Vilela and Moschella 2017, 534). A pesar de ello, las prácticas socioespaciales pueden verse limitadas por el paisaje ya que estos son una sumatoria de tiempos congelados en el espacio (Bartoli 2020a).

Los paisajes urbanos son también una forma resultante de la combinación de las coberturas y los factores que la soportan; además estos dos elementos sumados al relieve, mismo que se relaciona con la geomorfología (formas geométricas o expresión espacial del suelo), establecen una relación en la cual el paisaje integra tanto características ambientales como sociales (actividad humana y hábitat humano) (Oliveira 2018, 43). Gracias a sus características, los paisajes urbanos son una "herencia cultural de gran valor" y son un

componente importante de la identidad ya que reflejan los cambios de las ciudades (Capel 2002).

1.5.3 Paisajes urbanos hídricos

Un paisaje hídrico urbano, o urbano hídrico es aquel paisaje generado a través de la ocupación humana o los asentamientos urbanos en elementos hídricos como ríos, quebradas, lagunas, etc. El paisaje hídrico es a su vez un producto y un productor de un conjunto de relaciones interconectadas agua-sociedad y otros elementos no humanos y por ende, tiene varias dimensiones entre las que se encuentra la dimensión material, la simbólica y la política (Mendoza Fragoso 2019). El paisaje hídrico urbano al igual que otros paisajes es un producto social, es decir, se construye en la colectividad y a partir de la intervención e interacción de las personas (Vilela and Moschella 2017).

El estudio temporal tanto en la morfología urbanos como el los territorios hidrosociales es esencial debido a que emplean al paisaje como unidad de análisis y debido a que la velocidad de los cambios va a definir si una transformación paisajística es natural o antrópica; "el paisaje se toma un tiempo en integrar e incorporar las modificaciones territoriales para dar lugar a un nuevo paisaje" (Vilela and Moschella 2017, 534). Siendo necesario el análisis evolutivo, el análisis morfogenético (Durán Díaz 2014b) al involucrar el origen y la evolución, constituye la herramienta necesaria para representar la visión global de las cuencas vivas amazónicas y su morfología urbana.

El río tiene un papel histórico y es un elemento fundamental del paisaje y de los primeros poblados, los cuales en la actualidad a pesar de convertirse en su mayoría en centros consolidados aún mantienen relaciones río-comunidad o río-ciudad, es decir que los ríos son articuladores de la dinámica urbana (Dal'Asta, Amaral, and Monteiro 2014) y esta dinámica se ve reflejada en los paisajes, siendo de esta forma elementos que reflejan no sólo la relación río-ciudad sino también el papel estructural de los ríos en la conformación urbana de las ciudades.

1.5.4 Las periferias y la paradoja del agua en la Amazonía

Las periferias son espacios social y culturalmente heterogéneos en los que convive una población con diverso nivel adquisitivo pero en los cuales no existe necesariamente la mezcla social (Birche and Jensen 2019). Por ello, la periferia es descrita también como una espacialidad "fractal" lo cual implica que a pesar de la escala de aproximación al territorio, el binario centro/periferia se divide en múltiples relaciones de polos o márgenes de crecimiento

que evidencia una continua heterogeneidad (Popescu, Soaita, and Persu 2021). Según Lukas, Fragkou, and Vásquez (2020, 99), los "espacios urbanos o periurbanos ambientalmente desiguales (...) son resultado de la forma específica en que se organiza la relación entre flujos de capital, recursos naturales y relaciones de poder en distintas escalas y en contextos específicos". Consecuentemente, las periferias son espacios de alto dinamismo y diversidad o interfaces con gradientes urbano-rurales resultantes del crecimiento y la expansión urbana que a su vez es producto del proceso de urbanización acelerada.

Al ser Amazonía considerada como una periferia del modelo de urbanización planetaria, el estudio de las periferias urbanas de las ciudades amazónicas se convierte en un estudio de la periferia al cuadrado, es decir, la periferia de la periferia como un espacio donde las desigualdades se multiplican y el alto dinamismo económico, político y social también se complejiza sumado al complejo sistema natural en el que se desarrolla la urbanización. Así, las periferias amazónicas permiten evidenciar no solo la heterogeneidad del territorio sino también la fragmentación urbana, misma que permite evidenciar la forma física y espacial de las desigualdades sociales (Birche and Jensen 2019). Según Bartoli (2020b) los estudios de la ciudades amazónicas son capaces de revelar el carácter desigual del proceso de desarrollo capitalista.

Además, en la Amazonía ecuatoriana, las periferias no solamente son espacios de alto dinamismo y heterogeneidad, sino que además en ellas se encuentran asentamientos de comunidades indígenas que conforman un nuevo patrón urbano basado en la movilidad, la diversificación económica y la apropiación territorial multisituada en la que los aspectos étnicos, sociales, ambientales y territoriales construyen una nueva periferia más compleja (Alexiades and Peluso 2016).

Es espacios cuya heterogeneidad es alta se encuentra a su vez paradojas. En la Amazonía cuesta creer que existe escasez hídrica debido a la gran disponibilidad del recurso. A pesar de ello, y gracias al enfoque de la ecología política urbana se conoce que la escasez del agua es más bien el resultado de un proceso más complejo que involucra al poder, la pobreza y la desigualdad, es decir, que la escasez se construye por medio de procesos políticos e institucionales que acentúan la desigualdad y pobreza de las poblaciones más vulnerables dejándolos en una desventaja aún mayor (Damonte and Lynch 2016).

Swyngedouw and Bovarnick (1994) mencionan que la urbanización del agua, la incorporación del agua al circuito capitalista y las dinámicas urbanas relacionadas con la

domesticación del agua producen un acceso al agua desigual determinado por la clase, género o etnia y a su vez transforma al agua en un recurso escaso que es el centro de las luchas por el control y/o acceso. De esta manera, la escasez del agua es producida y efecto directo tanto de dinámicas socio-políticas o prácticas exclusivistas como por limitaciones del ambiente o de la producción (Swyngedouw and Bovarnick 1994; von Medeazza 2006).

En la región amazónica, esta posible paradoja del agua, donde la escasez se da y se construye, forma parte del estudio de los territorios hidrosociales y la morfología urbana. Pues la escasez hídrica genera en la población una búsqueda por alternativas que modifican el espacio y las formas de habitar, así mismo, esta escasez es parte predominante en el ciclo hidrosocial ya que refleja la existencia de lógicas de control hídrico que construyen una escasez en medio de la abundancia.

1.6 Síntesis de la discusión teórica

Un territorio hidrosocial combina tanto el espacio físico de la cuenca hídrica con las dinámicas sociales que se producen en este espacio, por ello, a las dinámicas sociales del agua se las puede enmarcar dentro del espacio social, puesto que este está definido por los actores sociales y los usos y el manejo material y simbólico que los mismos le dan al agua de la cuenca (Damonte Valencia 2015; Damonte and Lynch 2016). En el territorio hidrosocial se evidencia la naturaleza social del agua, pues ni los límites político-administrativos, ni los hidrográficos permiten englobar las dinámicas sociales, económicas y culturales del agua (Rondón Ramírez 2017).

En el territorio hidrosocial el ciclo del agua es igualmente hidrosocial pues es un proceso tanto físico como social, un proceso híbrido que fusiona naturaleza y sociedad y evidencia procesos económicos, sociales, ecológicos y políticos multiescalares (Larsimont and Grosso Cepparo 2014). En el ciclo hidrosocial los flujos de circulación del agua se afectados por la actividad humana, es decir, de qué manera los actores sociales la manipulan a través de distintos factores que abarcan desde las infraestructuras hidráulicas hasta las prácticas culturales, las significaciones y las valoraciones del agua reconfigurando tanto la acción humana como el ciclo natural del agua (Rondón Ramírez 2017; Larsimont and Grosso Cepparo 2014; Damonte Valencia 2015)

El agua y las lógicas que se tejen a su alrededor modifican la relación estructurante que este elemento mantiene en la urbanización. A pesar de ello, en contextos como el amazónico, en el cuál la red ecosistémica representa gran importancia y tiene alto valor, el agua sigue

funcionando como elemento que refleja la producción urbana. De esta manera, el agua mantiene un rol como vértebra urbana de las ciudades y como elemento que influye en la construcción de paisajes urbanos y morfologías urbanas particulares y mutables según la escala de estudio, el lugar y el tiempo.

1.7 Estrategia metodológica

La estrategia metodológica planteada para la presente investigación surge en línea con los aportes de Alimonda (2017) quién cuestiona los marcos epistemológicos y metodológicos que basan sus análisis en gran medida en perspectivas centradas en Occidente y generalmente no incorporan sistemas de conocimiento diversos y perspectivas del Sur Global. La necesidad de un enfoque más inclusivo y pluralista que reconozca e incorpore el conocimiento y las voces locales, generó que la estrategia teórica y metodológica se construya desde lo local hasta lo global, y de igual manera busca por medio una aproximación directa con actores generar el conocimiento del rol estructurante de los ríos.

Sobre los métodos dominantes en la construcción de los territorios hidrosociales se realizó una combinación en la que cada capítulo presenta una metodología específica: para el capítulo 2 correspondiente a la contextualización se realizó un álgebra de mapas para establecer una delimitación preliminar; para el capítulo 3, el estudio de morfogénesis fue guiado por las bases de Durán Díaz (2014b); el capítulo 4 relacionado con las relaciones hidrosociales siguío la base del estudio de Roca-Servat and Palacio Ocando (2019) en el cual se recalcan las relaciones hidrosociales como una alternativa ante el extractivismo; el capítulo 5 sobre el ciclo hidrosocial se construyó siguiendo la metodología aplicada por Rondón Ramírez (2017) en el estudio de la ciudad de Lamas; y finalmente el capítulo 6 sobre los paisajes urbanos emplea la metodología empleando las métricas del paisaje refernciadas en el estudio de Ortiz-Báez, Cabrera-Barona, and Bogaert (2021).

Capítulo 2. Contextualización: la Amazonía ecuatoriana de los ríos

Este capítulo cumple con el objetivo de ofrecer información relevante sobre el contexto amazónico, los territorios hidrosociales amazónicos y la morfología urbana. Para ello, en primer lugar, se estudia la red panamazónica como un conjunto de redes y sistemas que trasciende su delimitación; en segundo lugar, se presenta a la Amazonía ecuatoriana y las cuencas hidrográficas existentes para realizar una delimitación regional de los territorios hidrosociales por medio de un análisis de álgebra de mapas; en tercer lugar, se realiza una aproximación a la escala de ciudad analizando la conformación de las redes hidrosociales empleando la jerarquía urbana de los centros urbanos en la red urbana amazónica (Erazo Chalco 2017), las tipologías urbanas amazónicas (Cabrera-Barona et al. 2020), los ríos principales y secundarios (INAMHI) y la cobertura de agua potable de los sectores censales (Censo de Población y Vivienda INEC 2010). Finalmente, se realiza una breve aproximación a la realidad histórica y situacional de Puerto Francisco de Orellana como caso de estudio propicio para el estudio de la configuración social del agua y la conformación de la ciudad.

2.1 El agua es socionatural

Históricamente, el agua y los ríos siempre han cumplido un rol más allá del recurso. En muchos casos son los ríos los que delimitan y dividen políticamente un territorio y este límite debido al dinamismo de la estructura hidrográfica transforma a las delimitaciones en fronteras en movimiento (Saguier and Roca-CONICET). Estas fronteras en movimiento no se encuentran sólo entre naciones sino también al interior de las mismas pero lamentablemente al establecer las divisiones político-administrativas se puede llegar a perder la variabilidad de

estas fronteras y usualmente se las convierte en líneas rígidas que obstaculizan el estudio multiescalar y en red de los procesos urbanos.

Según Rondón Ramírez (2017) tanto las delimitaciones por cuencas hidrográficas como los límites administrativos presentan limitaciones. Rondón Ramírez menciona que "los límites hidrográficos no encajan con los políticos", puesto que "las dinámicas sociales, económicas y culturales escapan de los límites físicos" (2017, 4). Por ello, en la Amazonía la hibridación hace que los territorios hidrosociales y la morfología de las ciudades y poblados amazónicos presenten una delimitación variable que responde tanto a modificaciones actuales como a procesos históricos generando con ello la necesidad de un análisis continuo y evolutivo de la configuración de sus fronteras.

La configuración de la forma urbana de las ciudades amazónicas comienza con el registro generado por viajeros que las describen como asentamientos a lo largo de grandes ríos y sus arroyos que fueron consolidados por misioneros y colonizadores, pero que inicialmente eran el lugar de emplazamiento de las aldeas de los pueblos indígenas (A. Cardoso et al. 2020). Desde el comienzo de la civilización, los ríos se encuentran estrechamente ligados al origen y desarrollo de la urbes, a pesar de ello, al hablar de habitabilidad se encuentra una contradicción en esta íntima relación (Durán Díaz 2014b).

Desde el orígen de las ciudades, se concibe a la producción de habitabilidad como la búsqueda de separar y ordenar la tierra y el agua (Durán Díaz 2014b). Así mismo, este hecho se refleja en la "idea de ciudad" la cual a pesar de ser mutable y híbrida desde su concepción se vincula a lo sólido: la tierra y más bien lo contrario, lo líquido, el agua se convierten en un elemento casi invisible e inadvertido a pesar de que este es un reflejo de la ciudad, pues desde los charcos de agua hasta los ríos son capaces de convertirse en espejos de la ciudad (Valero Juan 2015).

El agua es el elemento primordial y primigenio de la naturaleza que produce el reflejo, la ciudad también es "de agua" tanto desde su esencia espejeante, como si ponemos el punto de mira en sus imágenes reflejadas en las más diversas superficies, desdibujadas en todos sus contornos, fragmentadas, borrosas; acuosas, en definitiva (Valero Juan 2015, 18).

Por lo tanto, la habitabilidad y la ciudad se encuentran más bien en la simbiosis de la tierra y el agua (Durán Díaz 2014a). Cuando se acepta la conjugación de estos elementos es cuando se puede observar al agua como elemento estructurante del territorio y de lo urbano y con ello también de la morfología urbana, es decir, la forma física, los paisajes urbanos, los principales

actores y los procesos de transformación que dan forma a los asentamientos, poblados o ciudades (Oliveira 2018).

Las modificaciones territoriales multiescalares de la Amazonía en Ecuador se generan principalmente por la expansión de las fronteras extractivas e infraestructuras asociadas a su urbanización (Cuvi 2016) es decir, las actividades productivas asociadas a la explotación de recursos y las infraestructuras que se construyen con el mismo fin son los factores determinantes tanto de la morfología de las ciudades como de las relaciones hidrosociales dominantes que configuran a los territorios hidrosociales amazónicos y los paisajes urbanos.

Para entender la forma actual de las ciudades amazónicas es importante comprender la morfogénesis urbana, evolución de la forma y estructura de las ciudades, misma que se evidencia a su vez en el análisis de la evolución de la red urbana amazónica en el tiempo y el espacio (Corrêa 2006; Cardoso et al. 2020, 3; Corrêa, de Oliveira y Ojima 2020). Por ello a continuación, se realiza una contextualización desde la escala macro hasta la escala humana para comprender las redes tanto urbanas como hídricas que permitirán realizar una aproximación a los territorios hidrosociales amazónicos ecuatorianos que son relevantes como casos de estudio de la investigación.

2.1.1 Red amazónica: La Amazonía como un todo

Las ciudades no son islas desconectadas sino más bien forman parte de un sistema con más ciudades y poblados. En este sistema se desarrollan un conjunto de relaciones jerárquicas y no jerárquicas, se forman cadenas de cooperación o competitividad y flujos de interacción que responden principalmente al modelo de desarrollo adoptado y se denotan los patrones de interacción urbana y la estructura urbana (Erazo Chalco 2017).

La Amazonía es un territorio que funciona como una red entretejida en el que el proceso de urbanización acelerada es un fenómeno demográfico-espacial y una combinación de morfologías materiales y sociales, es decir, una expresión de concentración tanto de bienes, personas como también de capital (Côrtes, De Oliveira D'Antona, and Ojima 2020) que según su intensidad reconfiguran el tejido urbano amazónico en un mosaico heterogéneo, dinámico y complejo.

De esta forma, en la red pan-amazónica conviven diversas relaciones; entre ellas, la relación evolutiva y ecosistémica que esta región mantiene con los Andes es trascendente debido a la estrecha interacción entre la Amazonía y los Andes y los intercambios a nivel físico entre las mismas los cuales resultan en la gran biodiversidad encontrada en la Amazonía (Instituto del

Bien Común 2018). Esta relación evolutiva y eco-sistémica otorga a su vez relevancia a los países andino-amazónicos (Ecuador, Colombia, Perú y Venezuela), que buscan una gestión integral de las cuencas hídricas (Quiroz, Iriarte, and del Prado Durán 2012, 10) debido a que es en los Andes donde se forman los ríos que desembocan en el Amazonas.

Además, al ser el agua un elemento que fluye, se mueve y viaja, es necesario considerar al territorio amazónico como una cadena de procesos que se desencadenan aguas arriba e inciden aguas abajo y por lo tanto tienen repercusiones fuera de los límites de sus cuencas y de sus fronteras políticas. Estas repercusiones son mayores cuando se comienzan a evidenciar signos de una región ecológicamente fragmentada tanto interna como externamente, en la cual los ríos se transforman en el último corredor ecológico para la recuperación de la conexión entre regiones como la andino-amazónica.

2.1.1.1 Escala Regional: Pan-Amazonía y la cuenca del Río Amazonas

La región amazónica abarca un área de 7,4 millones de km² y atraviesa ocho países: Brasil el cual cuenta con la mayor área amazónica (68,5%), seguido de Perú (10,3%), Colombia (6,5%), Bolivia (5,4%), Guyana (2,9%), Venezuela (2,5%), Surinam (2,2%) y Ecuador (1,6%) (CEPAL 2013; Erazo Chalco 2017). Este territorio constituye la selva tropical más extensa del mundo en la que se alberga la mayor biodiversidad del planeta y la cuenca hídrica más grande del mundo. La Amazonía es un territorio habitado por asentamientos humanos desde aproximadamente 11.000 años contradiciendo a la idea de selva "virgen y salvaje" es decir que la región ha estado habitada, modificada e intervenida por el ser humano, incluso antes de la colonización (Alcázar 2021).

Este territorio conforma la cuenca del río Amazonas en la que se encuentra aproximadamente del 17% al 20% del agua dulce en superficie terrestre mundial (CEPAL 2013; Erazo Chalco 2017; Instituto del Bien Común 2018). Además, el río Amazonas es uno de los más largos del planeta recorriendo 7096 km (Alcázar 2021) y gracias al cual fluyen alrededor de 1 000 000 km² de ecosistemas de agua dulce en los que se incluye tanto humedales ribereños como no ribereños.

Desde la perspectiva de los estudios socioambientales, las pérdidas que tiene la región amazónica se generan por los conflictos de intereses que resultan en la destrucción de las formas de vida de los pueblos indígenas, la biodiversidad, el agua y la selva (Cuvi 2016, 5; Laraque, Guyot, and Pombosa 2004; Charity et al. 2016). Según Charity et al. (2016), en el informe Amazonía viva, esta región cuenta con 34 millones de habitantes de los cuales el 65%

vive en ciudades. En 1950 iniciaron los asentamientos deliberados y el influjo de colonos y con ello la explotación masiva de recursos naturales y los cambios en el uso de suelo y el agua.

De forma general, en la Pan Amazonía, indistintamente de la nación, se observa como en se genera un común de dar respuesta a las prioridades nacionales sobre los intereses locales. Esto tiene repercusiones no solo en la valorización de la región, la cual trasciende al bosque y el sistema hidrográfico, pues el bioma amazónico mantiene la estabilidad climática, las culturas y las economías más allá de sus límites físicos (Charity et al. 2016), sino también en la gestión de los recursos, las políticas públicas y las formas de expansión urbana de las ciudades y poblados en desarrollo.

Debido a que la región pan-amazónica no es homogénea, en sus sub-regiones las dinámicas sociales, económicas, ambientales, culturales son variadas y en ella, las redes urbanas, geográficas y sociales se ve modificadas principalmente por las prácticas económicas dominantes (Bayón 2019; CEPAL 2013). En la Amazonía la ocupación territorial crea hibridaciones donde tanto la forma de las ciudades como las relaciones hidrosociales responden a una población que habita tanto lo "rural" como lo "urbano" y que mantiene un vínculo fuerte entre poblados y centros urbanos conformando una red urbana multiescalar (Peluso and Alexiades 2005; Cabrera-Barona et al. 2020; Bayón 2019).

2.1.1.2 Escala Regional: Región Amazónica Ecuatoriana (RAE)

La región amazónica ecuatoriana (RAE) está compuesta por seis provincias (Sucumbíos, Napo, Orellana, Pastaza, Morona Santiago y Zamora Chinchipe) y corresponde a casi la mitad del territorio nacional (45,47%). La región ecuatoriana es a su vez la región más densamente poblada de la pan-amazonía (López et al. 2019), aunque paradójicamente a nivel nacional la población amazónica está localizada mayoritariamente en zonas "rurales", con densidad poblacional es baja (López et al. 2019). Aunque como ya se ha mencionado esta concepción de habitar lo rural o lo urbano no es aplicable a la región amazónica ecuatoriana ya que sus pobladores en su mayoría transitan y habitan continuamente entre lo urbano y lo rural.

Con el crecimiento demográfico y la explosión urbana de la región surge una territorialización en las que paralelamente al desarrollo urbano se ocasionan fuertes presiones. Entre las principales presiones que amenazan a la Amazonía ecuatoriana se encuentran: la infraestructura vial, el extractivismo de commodities (petróleo, minería, madera), grandes proyectos como hidroeléctricas y la deforestación.

Históricamente, la RAE se ha visto configurada por una gran cantidad de procesos y contrastes resultantes tanto de los intereses del capital como de los objetivos geopolíticos (Herrera 1996; Erazo Chalco 2017). Estos procesos han configurado un sistema de redes de centros urbanos y poblados en los que la expansión y el crecimiento urbano es resultante de la actividad extractiva (Cabrera-Barona et al. 2020; Bayón 2019). Sirviendo a la actividad extractiva y las commodities, la conectividad además de la topografía es la gestora de la ocupación amazónica e influye en los actores sociales que producen las morfologías amazónicas.

En Ecuador, la ocupación amazónica se da desde dos frentes: el occidental por parte de los colonos de la Sierra y la Costa y desde el oriente por los colonos peruanos (Jarrín, Carrillo Tapia, and Zamora 2016). La ocupación por parte de los colonos de la Sierra y la Costa en la región norte se ve limitada en un comienzo mayormente debido a las escarpadas cordilleras y la escasez de infraestructura vial, a pesar de ello, con la llegada de las empresas petroleras en 1970, la región norte sufre un proceso acelerado de desarrollo.

En cambio en la región sur la ocupación se dio de forma temprana (alrededor de 1930) gracias a la accesibilidad geográfica hacia la Amazonía. A pesar de ellos, el proceso de ocupación difiere al observado en la región norte debido a que los colonos de Loja y Azuay que se movilizaron durante la fiebre del oro regresaron a sus provincias de origen cuando este periodo terminó (Jarrín, Carrillo Tapia, and Zamora 2016) influyendo así en los procesos de consolidación y crecimiento de los centros urbanos, haciendo que el mismo sea más lento en comparación con el proceso observado en la región norte.

En contraste, la ocupación por parte de los colonos peruanos se dio aprovechando la accesibilidad oriental por medio de los ríos navegables y tomó la forma de grandes haciendas a lo largo del ríos como el Napo, Curaray y Pastaza que desaparecieron cuando colapsó el comercio del caucho (Jarrín, Carrillo Tapia, and Zamora 2016). Actualmente, esta conectividad fluvial continúa reflejándose en integración fluvial no solo a nivel nacional sino también regional, y se la considera como una potencialidad que puede ser aprovechada para generar intercambio económico de Ecuador con Perú y posteriormente Brasil (Laraque, Guyot, and Pombosa 2004).

De esta manera la ocupación por parte de colonos tanto nacionales como internacionales hacia la Amazonía surge y va consolidándose de forma paralela al avance de la construcción de la infraestructura vial, cuyo principal fin es el de acortar las brechas existentes y facilitar el

proceso de extracción petrolera y minera. De forma más silenciosa, la red fluvial se presenta en la superficie como un un sistema de conexión y transporte intra e interregional, pero a su vez, es un medio altamente aprovechado para la actividad ilegal y el contrabando.

2.1.1.3 Red urbana amazónica ecuatoriana

La red urbana amazónica ecuatoriana se desarrolla siguiendo una morfología lineal coincidente con el eje vial de la troncal amazónica (E45) que se representa de forma longitudinal de norte a sur (Erazo Chalco 2017, 75). Simultáneamente, esta red muestra rastros de la red dendrítica en la que se configura la ocupación territorial junto a ríos navegables, la cual a pesar de ser la forma más simple de red permite reflejar tanto el pasado colonial de la región como la zona de influencia de los centros urbanos (Corrêa 2006, 38).

Según Erazo Chalco (2017), la distribución de la red urbana a escala regional no presenta una aglomeración o una dispersión marcada sino más bien una distribución uniforme pero desigual a nivel intrarregional y en la que se puede agrupar a los centros urbanos según su jerarquía urbana en cuatro grupos o niveles. En el primer nivel, se encuentra la ciudad de Nueva Loja; en el segundo nivel, se encuentran cinco ciudades que son capitales provinciales, Puerto Francisco de Orellana (El Coca), Puyo, Tena, Macas y Zamora; en el tercer nivel, se encuentran seis centros urbanos cuya población fluctúa entre los 2.000 hasta los 16.000 habitantes; y en el cuarto nivel, se localizan veintinueve centros urbanos con poblaciones entre 400 a 5.000 habitantes.

2.1.1.4 Cuencas hídricas de la Amazonía ecuatoriana

En Ecuador, los límites hidrográficos se encuentran separados en la vertiente del pacífico y la vertiente atlántica o amazónica por la presencia de la cordillera de los Andes (López et al. 2019). En la vertiente amazónica ecuatoriana, las cuencas hidrográficas son binacionales y transfronterizas (compartidas con Colombia y Perú) y su topografía clasifica el territorio en piedemonte, selva alta y llanura (Laraque, Guyot, and Pombosa 2004). En estas cuencas se encuentra la mayor concentración de agua dulce de Ecuador con el 79%, a pesar de ello, los ecosistemas acuáticos amazónicos sufren presiones asociadas a la degradación por usos de suelo evidenciadas principalmente en la deforestación (López et al. 2019). Además siete cantones amazónicos se encuentran entre los cantones con la cobertura más baja de agua potable y altos niveles de pobreza (Molina, Pozo, and Serrano 2018).

En Ecuador existen tres grandes cuencas hidrográficas amazónicas: la del río Napo con 31 400 km², la del río Santiago con 26 300 km² y la del río Pastaza con 21 100 km² (Laraque,

Guyot, and Pombosa 2004). En estas cuencas, ríos como: el Putumayo, Aguarico, Napo, Morona y Santiago tienen potencial para ser aprovechados para la integración fluvial con Perú y posteriormente Brasil y para el desarrollo socioeconómico de la región (Laraque, Guyot, and Pombosa 2004). Al mismo tiempo, las cuencas hidrográficas mencionadas se consideran como andino-amazónicas, lo cual resulta en variabilidad climática y una producción urbana influenciada tanto por las características de alta montaña como las de llanura (**Figura 2.1.**).

Figura 2.1. Escala regional: Pan-Amazonía y Región Amazónica ecuatoriana (RAE)

Fuente: Elaborado por la autora con base en imágenes de Google Earth y mapas de la delimitación y codificación de unidades hidrográficas del Ecuador generados por la Secretaria Nacional del Agua (2009)

2.2 Aproximación a una delimitación de cuencas vivas a nivel regional

Tanto la delimitación generada por las cuencas hidrográficas como la división política no refleja de forma precisa las relaciones sociales entre los actores del agua, ya que las relaciones político-sociales rebasan los límites de la naturaleza (Quiroz, Iriarte, and del Prado Durán 2012, 30). Por ello, aplicando el análisis espacial de álgebra de mapas y utilizando como factores determinantes del espacio hidrosocial la desagregación del mismo en espacio físico, social y político y el espacio urbano para representar la morfología urbana se realizó un análisis multicausal conformado por seis capas que resultaron en dos mapas resultantes con una demarcación preliminar de zonas en las que se generan regiones con características similares.

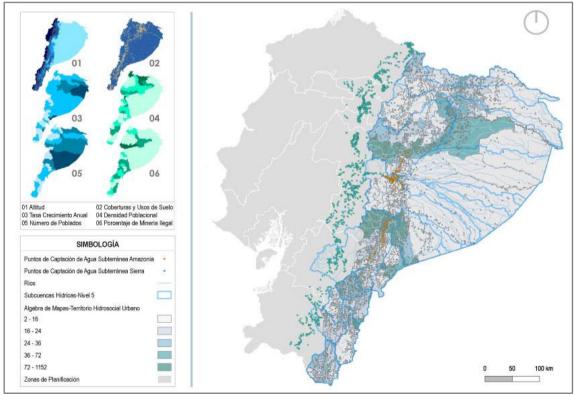
Para el espacio físico se empleó la altitud y las coberturas y usos de suelo de suelo existentes en la región; para abordar el espacio urbano se empleó la densidad poblacional y la tasa de crecimiento anual a nivel cantonal; para abordar el espacio social se empleó la cantidad de poblados o centros urbanos por cantón y para representar la contaminación de las cuencas se consideró el porcentaje de minería ilegal por cantones empleando los puntos de minería ilegal recolectados por la Red Amazónica de Información Socioambiental (RAISG) en el año 2020.

La delimitación política cantonal fue empleada como escala de análisis regional y de igual manera, cada imagen ráster fue reclasificada en la escala de 1 a 4, siendo 4 el valor que representa zonas urbanas con las siguientes características: altos niveles de altitud, densidad poblacional y tasa de crecimiento anual, presencia de puntos de minería ilegal y alto número de centros urbanos; y caracterizándose el valor de 1 por ser zonas urbanas que presentan bajos niveles de altitud, densidad poblacional cantonal y tasa de crecimiento.

En el **Mapa 2.1.** se logra observar la sumatoria resultante de todas las capas existentes y se obtiene como resultado la formación de 4 zonas, de las cuales la zona a lo largo del río Napo y la zona que atraviesa Macas son las que cuentan con los valores más elevados para la actividad antrópica y agrícola misma que está estrechamente vinculada con el uso y contaminación de las fuentes hídricas. Esta primera aproximación a las delimitaciones hidrosociales comparada con el mapa resultante en el **Mapa 2.2.** coinciden en cuanto a las zonas generadas en torno al río Napo y al río Upano.

Puntos de Captación de Agua Subterránea Amazonia Puntos de Captación de Agua Subterránea Sierra Subcuencas Hidricas-Nivel 5 Algebra de Mapas-Territorio Hidrosocial Urbano 7-11 11 - 12 12 - 12 12 - 14

Mapa 2.1. Delimitación de cuencas hidrosociales de la RAE-Escala regional (Sumatoria)


Fuente: Elaborado por la autora con información del trabajo de campo

14 - 17

Zonas de Planificación

Mapa 2.2. Delimitación de cuencas hidrosociales de la RAE-Escala regional: Multifactor

Fuente: Elaborado por la autora con información del trabajo de campo

100 km

En este segundo análisis en lugar de una sumatoria de las capas temáticas, se realizó un multiplicación para conseguir un territorio hidrosocial multicausal. En este análisis se logró además una fragmentación de la región sur en la que se forman dos zonas hidrosociales a pesar de ello, se consigue evidenciar la existencia de zonas de alta heterogeneidad y diversidad.

2.2.1 Escala de ciudad: Provincias/cantones y sub-cuencas hídricas

En la escala de ciudad, la red urbana amazónica se analiza a nivel de núcleos y sub-redes generadas en torno a los ríos principales y a la red vial. El desarrollo desigual dentro de la región se visualiza principalmente al observar el desarrollo de la región norte y sus principales ciudades. A pesar de ello, dado que no existe un dominio de estas sobre el resto de centros urbanos, se puede considerar a los otros centros según su jerarquía urbana y la red a nivel de ciudad que se crea con poblados cercanos u otras ciudades (Erazo Chalco 2017).

2.2.2 Tipologías urbanas amazónicas

En la **Tabla 2.1.** se resumen los hallazgos sobre las regionalizaciones generadas en la investigación sobre la Amazonía ecuatoriana de Cabrera-Barona et al. (2020). Esta investigación evidencia que la región norte (Tipología 5 y 6) presenta una mayor complejidad urbana y que además es en ella en donde se evidencia valores más elevados de fractalidad lo cual a su vez representa patrones gestores de dispersión urbana en la región. A continuación, se encuentra la región centro (Tipología 1 y 3) y la región sur (Tipología 2) las cuales presentan una expansión descentralizada y con mayores niveles de compacidad comparado con los valores encontrados en la región norte. Debido a las implicaciones directas del fenómeno de dispersión urbana en la degradación ambiental de las cuencas (Buzai et al. 2017) y en la morfología urbana, se considera como un parámetro relevante para la selección de casos.

Tabla 2.1. Resumen de las tipologías urbanas amazónicas

Indicadores para la regionalización	Dimensión fractal; Número de calles pavimentadas; Luminosidad; Distancia hacia el área deforestada más cercana; Distancia hacia la fuente de contaminación petrolera más cercana; y Distancias a la fuente de contaminación minera más cercana.					
Tipología urbana	Descripción	Localización Regional	Fractalidad			
Región/Tipología 1	Ciudades pequeñas y centros urbanos emergentes del centro y el norte en las provincias de Morona Santiago, Sucumbíos, Napo y Orellana. La forma urbana de estas ciudades no es muy irregular.	Centro y Norte	1.05 ± 0.02			
Región/Tipología 2	Ciudades pequeñas y centros urbanos emergentes del sur de las provincias de Morona Santiago y Zamora Chinchipe. La fractalidad de estos centros urbanos es baja por ende se consideran zonas compactas y no muy irregulares.	Sur	1.07 ± 0.03			
Región/Tipología 3	Ciudades y centros urbanos emergentes del centro y norte. Estas ciudades presentan mayor irregularidad en cuanto a forma en comparación al promedio de todos los centros urbanos	Centro y Norte	1.12 ± 0.02			

	amazónicos. Los centros con mayor jerarquía en esta tipología son Macas, Puyo y Tena.		
Región/Tipología 4	Centros urbanos emergentes del nororiente. Son zonas cercanas a las áreas de protección ambiental y aunque algunos centros urbanos se encuentran cerca a fuentes de contaminación por petróleo se encuentran a su vez lejos de contaminación minera.	Norte y Centro	1.09 ± 0.04
Región/Tipología 5	Tres ciudades del norte: La Joya de los Sachas, Shushufindi y El Coca. Estas ciudades están cercanas a fuentes de deforestación y contaminación petrolera.	Norte	1.13 ± 0.03
Región/Tipología 6	Lago Agrio: esta ciudad tiene una forma urbana irregular, altos niveles de luminosidad y de calles pavimentadas y se encuentra cercana a zonas de deforestación.	Norte	1.20

Fuente: Elaborado por la autora con base a Cabrera-Barona et al. (2020)

2.2.3 Sub-Cuencas hídricas de la Amazonía ecuatoriana

Según la delimitación del nivel 5 de las unidades hidrográficas del Ecuador utilizando la metodología Pfafstetter generado por la Secretaria General de la Comunidad Andina (SGCAN), la Unión Internacional para la Conservación de la Naturaleza (UICN) y la Secretaria Nacional del Agua (2009), en la región amazónica existen 25 unidades hidrográficas o sub-cuencas hídricas. En la **Tabla 2.2.** se observa las principales características de las cuencas hidrográficas, siendo los ríos Napo Alto, Aguarico y Quijos-Coca los que presentan el mayor número de presiones (5) seguidas de los ríos Curaray, Napo Bajo, Pastaza, Upano, Putumayo, Numbaia, Yacuambi, entre otros pertenecientes a las macro cuencas del río Napo y del río Santiago con 4 presiones (López et al. 2019).

Tabla 2.2. Datos sobre las unidades hidrográficas de nivel 5 en la RAE

#	Unidades hidrográficas	Área (ha)	% respecto de la RAE	Demarcación hidrográfica	Total de Presiones	Tipo de Presiones
1	Río Curaray	1659747	14,26	D.H. Napo	4	Minería, Petróleo, Carreteras y Deforestación
2	Río Napo (Napo Bajo)	1319219	11,33	D.H. Napo	4	Minería, Petróleo, Carreteras y Deforestación
3	Río Arajuno (Napo Alto)	1221823	10,50	D.H. Napo	5	Minería, Petróleo, Carreteras, Hidroeléctricas y Deforestación
4	Río Aguarico	1200096	10,31	D.H. Napo	5	Minería, Petróleo, Carreteras, Hidroeléctricas y Deforestación
5	Río Pastaza	933564	8,02	D.H. Pastaza	4	Minería, Petróleo, Carreteras y Deforestación
6	Río Macuma	626177	5,38	D.H. Santiago	2	Carreteras y Deforestación
7	Río Upano	590166	5,07	D.H. Santiago	4	Minería, Carreteras, Hidroeléctricas y Deforestación
8	Río Putumayo	546281	4,69	D.H. Napo	4	Minería, Petróleo, Carreteras y Deforestación
9	Río Quijos	529954	4,55	D.H. Napo	5	Minería, Petróleo, Carreteras, Hidroeléctricas y Deforestación
10	Río Cunambo	367564	3,16	D.H. Pastaza	2	Petróleo y Deforestación
11	Río Pindoyacu	353586	3,04	D.H. Pastaza	2	Petróleo y Deforestación
12	Río Bobonaza	327626	2,81	D.H. Pastaza	3	Petróleo, Carreteras y Deforestación
13	Río Numbaia	312737	2,69	D.H. Santiago	4	Minería, Carreteras, Hidroeléctricas y Deforestación
14	Río Santiago	259961	2,23	D.H. Santiago	3	Minería, Carreteras y Deforestación
15	Río Nangaritza	241450	2,07	D.H. Santiago	3	Minería, Carreteras y Deforestación
16	Río Quimi	170232	1,46	D.H. Santiago	3	Minería, Carreteras y Deforestación
17	Río Jambue	163323	1,40	D.H. Santiago	4	Minería, Carreteras, Hidroeléctricas y Deforestación
18	Río Yacuambi	150293	1,29	D.H. Santiago	4	Minería, Carreteras, Hidroeléctricas y Deforestación

19	Río Cuchipamba	148675	1,28	D.H. Santiago	4	Minería, Carreteras, Hidroeléctricas y Deforestación
20	Río Zamora	141304	1,21	D.H. Santiago	4	Minería, Carreteras, Hidroeléctricas y Deforestación
21	Río Huasaga	136843	1,18	D.H. Pastaza	1	Deforestación
22	Río Corrientes	113411	0,97	D.H. Pastaza	1	Deforestación
23	Río Chicaña	55883	0,48	D.H. Santiago	3	Minería, Carreteras y Deforestación
24	Q. Arabela	32878	0,28	D.H. Pastaza	1	Deforestación
25	Río Maki	24113	0,21	D.H. Pastaza	1	Deforestación
26	Q. S/n 1	13153	0,11	D.H. Pastaza	0	Ninguna
27	Q. S/n 2	1404	0,01	D.H. Pastaza	0	Ninguna
-	TOTAL RAE	11641467	100,00		80	

Fuente: López et al. 2013

2.2.4 Redes hidrosociales

La relación agua y sociedad se refleja en el estudio del ciclo hidrosocial, el cual estudia la continua y variable relación entre el ciclo hidrológico y las practicas sociales. Los cambios en este ciclo se reflejan en el espacio y configuran paisajes en los que se evidencian las relaciones hidrosociales, es decir, las relaciones de poder y conflicto en torno al agua (Damonte-Valencia 2015, 7). Estas relaciones a su vez son un elemento de vertebración territorial y urbana, y son generadoras de forma urbana que influye en las dinámicas urbanas y permanece en la memoria colectiva (Durán Díaz 2014, 52).

Las presiones y amenazas anteriormente descritas para cada cuenca hidrográfica de la RAE, sirven para seleccionar de los territorios hidrosociales obtenidos a aquellos que presentan tensiones e interacciones que (re)configuran las redes hidrosociales y a su vez son un elemento estructurante de la forma urbana. Igualmente, el contexto sociopolítico que surge de la relación Estado-sociedad, es una determinante que permite aproximarse al caso de estudio. Pues es esta relación socio-política y el control hídrico el que define y redefine las prácticas institucionalizadas en relación al uso y acceso del agua (Damonte-Valencia 2015).

De esta manera, en la **Mapa 2.3.** se analiza las redes hidrosociales conformadas en torno a los ríos Napo y Upano y los centros urbanos de Tena-Puerto Francisco de Orellana y Macas. La red hidrosocial del río Napo se subdivide en dos redes la red Napo Alto, en la cual el principal centro urbano es la cabecera cantonal de Tena (Jerarquía urbana-Grupo 2) y los poblados asociados a esta como: Archidona (Jerarquía urbana-Grupo 3), Puerto Napo (Jerarquía urbana-Grupo 3), Muyuna y Pano. En esta red hidrosocial se encuentran 3 afluentes que desembocan en el río Napo, el río Tena, Pano y Misahualli.

La red Napo Bajo se configura en torno a Puerto Francisco de Orellana (Jerarquía urbana-Grupo 2), la cual se encuentra rodeada además por los ríos Payamino y Coca, y en esta red se destaca la ocupación de diversas comunidades indígenas en las riberas del río Napo. En contraste, la red hidrosocial del río Upano se desarrolla de forma longitudinal a la red vial de la Troncal Amazónica (E45) y atraviesa diversos centros urbanos como Sucúa, Huambi, Logroño, Patuca y Santiago de Méndez. Cabe recalcar, que actualmente la infraestructura vial se constituye como un eje dominante por sobre los ríos, pero esta relación se modifica a medida que se adentra hacia la llanura amazónica.

TERRITORIO HIDROSOCIALES AMAZÓNICOS TERRITORIO HIDROSOCIAL CENTRO-NORTE RED HIDROSOCIAL DEL RIO NAPO RIO TENA RIO MISAHUALLI RIO PAYAMINO RIO COCA La Joya de los Sachas RIO PANO RIO NAPO TERRITORIO HIDROSOCIAL CENTRO-SUR-RED HIDROSOCIAL DEL RIO UPANO RIO UPANO RIO NAMANGOZA MACAS Patuca Santiago de Méndez E45 (Tronca RED HIDROSOCIAL DEL SUR Y POBLADOS URBANOS GUALAQUIZA EL PANGUI YANTZAZA ZAMORA SIMBOLOGÍA Delimitación Previa de territorio hidrosocial Cuenca hídrica Red Vial

Mapa 2.3. Redes hidrosociales del Río Napo y el Río Upano-Escala de sitio

Fuente: Elaborado por la autora con información del trabajo de campo

2.2.5 Escala de lugar/humana: Relaciones hidrosociales

La relación río-ciudad no esta limitada al suministro de recursos ni a la navegabilidad o transporte, "sino que está íntimamente relacionada con la morfología urbana, las actividades económicas, los itinerarios poblacionales, la memoria colectiva y la identidad" (Durán Díaz 2014, 52) convirtiéndose así, el agua en un elemento que influye en la forma del territorio y su cohesión. La infraestructura es el marcador espacial más evidente, por ello la infraestructura hídrica misma que en la región amazónica se localiza mayoritariamente en las provincias de Napo y Morona Santiago, constituyen otro indicador para la determinación de los casos de estudio (Ver Tabla 2.3.).

Tabla 2.3. Datos sobre la infraestructura hídrica en la RAE

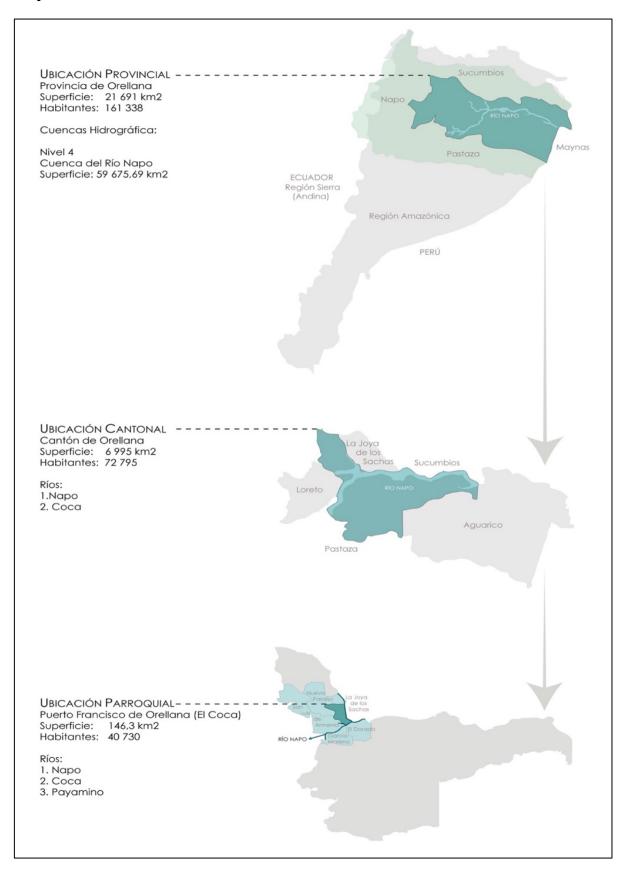
Infraestructura hídrica de la Amazonía ecuatoriana							
Hidroeléctrica	Ubicación	Tipo	Porcentaje por Provincia				
Coca Codo Sinclair	Napo - El Chaco	Pasada	28.57 %				
Pusuno	Napo - Tena	Pasada	20,37 70				
Due	Sucumbíos – Gonzalo Pizarro	Pasada	14,29 %				
Abanico	Morona Santiago - Morona	Pasada					
Normandia	Morona Santiago - Morona	Pasada	42,85 %				
Hidrosanbartolo	Morona Santiago - Santiago	Pasada					
Delsitanisagua	Zamora Chinchipe - Zamora	Pasada	14,29 %				

Fuente: Elaborado por la autora a partir de datos del Observatorio de Electricidad 2021.

2.3 Selección de los casos de estudio

El territorio hidrosocial conformado a lo largo del río Napo ha sido seleccionado como caso de estudio debido tanto a las presiones que se encuentran en esta cuenca las cuales incluyen desde actividades extractivas hasta la deforestación y la infraestructura vial, como a la relevancia de esta cuenca al ser una de las principales afluentes de la macro cuenca amazónica. En relación a la red urbana, la cuenca del río Napo cuenta con centros poblados de distinta jerarquía urbana (nivel 2 y 3) además de morfologías acuáticas relacionadas directamente a sus geografías del agua. Finalmente, la red hidrosocial del río Napo presenta una mayor complejidad frente al desarrollo longitudinal de otras redes hidrosociales al igual que en esta se diferencian y se marcan los usos del agua y el río. El río Napo tiene gran relevancia para el transporte de aproximadamente 80 comunidades principalmente kichwas y en sí se podría considerar como un territorio hidrosocial completamente amazónico.

2.3.1 Puerto Francisco de Orellana - El Coca


En la cuenca del río Napo se encuentran dos centros urbanos de jerarquía urbana nivel 2: Tena y Puerto Francisco de Orellana (El Coca) (Erazo Chalco 2017). Y a pesar de que ambos casos de estudio generan grandes aportes sobre los ríos urbanos y la configuración social del agua como elemento que influye en la morfología urbana debido al alcance de esta investigación se optó por elegir uno de los centros urbanos. Dado que la ciudad de Puerto Francisco de Orellana encabeza el grupo de jerarquía urbana 2, es el centro urbano con mayor crecimiento urbano, y a su vez tiene en acceso directo al río Napo y se encuentra rodeada por 2 afluentes importantes del mismo fue seleccionada como el caso de estudio para la presente investigación.

2.3.2 Contexto situacional

El cantón Francisco de Orellana pertenece a la provincia de Orellana. Así mismo, esta provincia junto a las provincias de Napo y Pichincha corresponden a la Zona de Planificación 2. El cantón se ubica al nororiente de la RAE abarcando una superficie de 7 047 km2. El cantón limita al norte con el cantón La Joya de los Sachas y los cantones de Cascales y Shushufindi de la provicia de Sucumbios, al sur el cantón limita con los cantones de Arajuno de la provincia de Pastaza y Tena de la provincia de Napo, al este el cantón limita con el cantón aguarico de la misma provincia y al oeste el límite se comparte entre el cantón de Loreto de la provincia de Orellana y Tena de la provincia de Napo (**Mapa 2.4.**).

La ciudad Puerto Francisco de Orellana, mejor conocida como El Coca debido a los rituales realizados por los pueblos nativos con las hojas de Coca, se encuentra al nororiente de la RAE. De acuerdo con los datos del último Censo de Población y Vivienda (Instituto Nacional de Estadísticas y Censo de Ecuador 2010), en 2010 la población asciende a 72 795 habitantes y encabezando la lista de crecimiento demográfico con un 123% de crecimiento urbano (Bayón 2019). Además, esta ciudad se localiza en un punto estratégico entre tres ríos: Payamino, Coca y Napo (los dos primeros afluentes del último) y funciona como centro de articulación de ejes como: el Napo y el Auca.

Mapa 2.4. Ubicación del caso de estudio

Fuente: Elaborado por la autora con información del trabajo de campo

Puerto Francisco de Orellana es una ciudad portuaria amazónica de importancia regional, ubicada en la parroquia urbana homónima y delimitada por tres ríos que funcionan como límites naturales. Al noroeste, la ciudad se encuentra delimitada por el río Coca, al sureste, por el río Payamino y al sur por el río Napo. La ciudad cubre una superficie de 2 727,80 Ha que corresponde al 18,8% del área parroquial (GAD Municipal Francisco de Orellana 2019).

El proceso de crecimiento y expansión de la ciudad ha sido descontrolado y desordenado a partir de la década de los 90s debido al crecimiento poblacional y la escasa planificación urbana. Las problemáticas a las que se enfrenta en la actualidad se relacionan con la presencia del Aeropuerto en medio de la ciudad, la demanda de servicios básicos de calidad y la presencia de compañías petroleras en el área urbana (GAD Municipal Francisco de Orellana 2019). La consolidación de la urbanización de Puerto Francisco de Orellana comienza en los primeros años del siglo XXI, siendo el año 2005, el cual refleja más claramente esta consolidación. En el año 2001 la ciudad cuenta con 18 298 habitantes y para el año 2010 este número aumenta a 45 163 habitantes obteniendo así una tasa de crecimiento de la población de 10,04% al igual que una densidad poblacional que ha crecido hasta los 297,13 hab/km2 en 2010 frente a los 51,35 hab/km2 de densidad poblacional en el año 1990. Además, en la ciudad el proceso de urbanización responde a las continuas crisis agrarias como la caída del precio del café y la poca productividad agropecuaria por la baja calidad de suelo (GAD Municipal Francisco de Orellana 2019).

Tanto a nivel cantonal como a nivel de ciudad, el desarrollo económico-productivo es exógeno dado que responde y depende de agentes externos, así mismo, las ciudades amazónicas de la región norte de Ecuador son altamente especializadas y dependen del desarrollo neoextractivista y por consiguiente su evolución está en manos del precio de las commodities (González Comín 2021). En el cantón Puerto Francisco de Orellana se encuentran concesionados 21 bloques petroleros administrados principalmente por Petroamazonas EP., y ocupan el 91,55% del área del cantón. Las provincias de Orellana y Sucumbíos son las que tienen la mayor producción petrolera del país pero paradójicamente son también las que tienen los mayores índices de pobreza por Necesidades Básicas Insatisfechas (NBI) del país (GAD Municipal Francisco de Orellana 2019).

2.3.3 Identidad ribereña

Una característica importante de la identidad de la población del cantón es su condición de ribereña. Incluso antes de la época cauchera, pero principalmente a partir de ella la persona

ribereña es aquella que vive junto a los ríos afluentes del río Amazonas. En Puerto Francisco de Orellana se los denomina como personas de la ribera del Napo (GAD Municipal Francisco de Orellana 2019). Según Barclay (1998), la expresión "señores ribereños" se utilizó a partir de la década de 1900 como una forma de referirse a los patrones caucheros, denotando con ello una nueva organización social y espacial en la que los patrones extractores más importantes pasan a vivir a orillas de los grandes ríos navegables.

De esta forma la identidad ribereña se relaciona con la distinción étnica y económica. Posteriormente, con la caída del caucho la identidad ribereña pasa a ser asociada con los dueños del fundo (fincas o chacra) que igualmente continuaron viviendo junto a los ríos navegables. En los años 70 y con la explotación petrolera aparece la identidad de colono y se pierde la identidad de ribereño.

Actualmente, la concepción del ribereño como elemento de dominio ha cambiado, es de integración y pertenencia cultural propia del río Napo. Gente de ribera son: indígenas del pueblo kichwa amazónicos, los mestizos y mulatos descendientes de colonos, mestizos y mulatos descendientes de personas nacidas en Coca, hasta las personas de origen extranjero nacidas en Coca. Por la herencia amazónica, la gente amazónica casi siempre vivió y se movilizó desde el sistema fluvial. Desde la localización de la ciudad, está rodeada por 3 ríos, y en el país no puede haber más gente de ribera. (GAD Municipal Francisco de Orellana 2019, 54)

Así como la identidad de población amazónica ribereña ha evolucionado y cambiado hasta constituirse como una amalgama cultural y étnica, la ciudad de Puerto Francisco de Orellana es una ciudad de ribera de los ríos y por lo tanto, una ciudad ribereña en la que los ríos no solo delimitan el territorio sino que además lo determinan y configuran.

Capítulo 3. Morfogénesis de los territorios acuáticos de "El Coca"

"Con frecuencia estos vientres de arcilla están decorados con señales de anacondas, o el curso sinuoso de los afluentes. Las boas son los ríos. Las aguas recuerdan el hecho primigenio de la creación, la travesía fluvial de las grandes serpientes y también prefiguran el irrevocable momento de la descomposición y el renacer" 17

Los cuatro capítulos empíricos abordados a partir de esta sección, se han estructurado en cuatro secciones escalares que nos llevan a descubrir multi escalarmente el territorio hidrosocial urbano de El Coca.

Empezando por el presente capítulo que es una expresión del pasado que nos introduce a reconocer el origen y el camino del agua que dio lugar a la forma urbana actual; el cuarto capítulo aborda la escala doméstica, la del agua y el individuo, de la gente del río, con rostro, identidad y personalidad que configuran ciudad desde el nivel de los modos de habitar resultantes de la relación "Mi río y yo"; el quinto capítulo se relaciona con lo comunal, con los bordes urbanos que se forman al identificar al río como un corredor urbano que conecta, unifica y traslada, pero que también separa, segrera, excluye no por su naturaleza sino más bien por los flujos de poder que dominan los flujos de agua de la ciudad; finalmente el sexto capítulo aborda lo urbano/territorial observando como las territorialidades hidrosociales se interrelacionan e influyen fuera de los límites político/administrativos y se gestan bajo

71

¹⁷ Exhibición permanente: Una visita a los Omaguas en el Museo Arqueológico y Centro Cultural de Orellana (MACCO) párrafo dedicado a las vasijas Omaguas.

relaciones de poder asimétricas a lo largo de los ríos cuya influencia no fluye en una sola dirección sino que desencadena repercusiones a mayor y menor escala, en el tiempo y en el espacio al que da forma.

Este viaje río atrás comienza con esta primera sección correspondiente al análisis histórico de la relación río-ciudad en El Coca, basado de forma general en los hitos más relevantes que reflejan tanto el desarrollo urbano de la ciudad como los cambios en la relación hidrosocial de la misma.

Las relaciones de poder sobre los recursos hídricos, su uso, manejo y control, en el territorio que corresponde a El Coca no siempre fueron de marcada desigualdad e injusticia. Desde hace unos 20.000 años, la Amazonía ha sido habitada y para permanecer en ella, los pueblos selváticos tuvieron que implementar métodos para adaptar el entorno natural en un entorno apto para la vida humana. La selva amazónica antes de la conquista no era un territorio virgen más bien su naturaleza era cultural, puesto que fue modificada para acoger al hombre y sus prácticas.

Los pueblos selváticos históricos se dividían en dos grandes grupos: los ribereños y los selváticos. Los pueblos ribereños al ocupar las riberas de los grandes ríos gozaban de beneficios como tener acceso a una reserva alimenticia basada en la fauna acuática, además el río con sus inundaciones anuales aportaba con limo para enriquecer la tierra y finalmente los ríos era una ruta que facilitaba el comercio y la movilidad (Museo Arqueológico y Centro Cultural de Orellana 2022).

Los Omaguas fueron uno de los pueblos ribereños más grandes y prósperos que habitaron el Napo, llamados por los cronistas como señores del río (Acuña 2009) citado en Cabrero (2022), para ellos el río y sus aguas eran un elemento fundamental para la vida y cultura. La importancia de los bordes sinuosos del agua quedaron representados tanto en urnas como en bandejas y platillos evidenciando así la vida fluvial (**Figura 3.1**).

Los vestigios remanentes de los Omaguas reflejan la relación hidrosocial del pueblo con los ríos, la cual se caracteriza por ser una relación simbiótica en la que se adaptan las formas de habitar el río y sus dinámicas, muestra de ello, son los asentamientos Omaguas que mantenían

un patrón caracterizado por emplear palafitos 18 (Cabrero 2022). Además, este grupo se diferencia de los pueblos selváticos al usar al río y la pesca como el principal sustento de la vida, mientras en otros pueblos se aplicaba activamente la ganadería, la avicultura y la cosecha de yuca y plátano, los Omaguas se dedicaban mayoritariamente a la pesca de diversas especies acuáticas y al comercio de las mismas usando las rutas de los ríos (Maw 1829).

Figura 3.1. Grabado Omagua que simboliza los ríos

Fuente: Fotografía tomada durante el trabajo de campo en la exposicón permanente del MACCO.

Los Omaguas mantenían relaciones y construcciones hidrosociales fuertes que marcaban todos los aspectos de la vida cotidiana, además de aspectos comunitarios como la economía y las formas de habitar el espacio.Durante esta época, el río era una muestra de poderío, pues para dominar estas riberas consideradas como ricas y un bien codiciado los pueblos debían ser

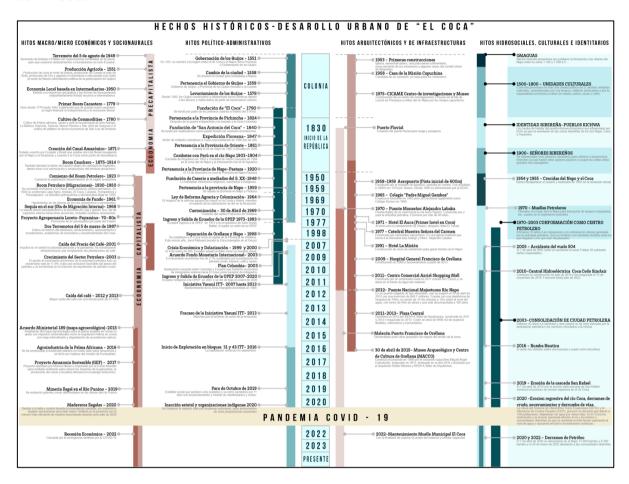
¹⁸ Construcción que se alza sobre estacas o pilares (pilotes) sobre el agua, orillas de río o mar o terrenos inundables.

forzosamente guerreros, no sólo para conquistar las mejores riberas sino también para mantenerlas y protegerlas de otros contendientes (Museo Arqueológico y Centro Cultural de Orellana 2022). Y es en estas huellas dejadas en el río como se evidencia también el ocaso de esta gran civilización, con la llegada de misioneros y conquistadores, río arriba españoles y río abajo portugueses, comenzó la resistencia y lucha, la pérdida de las riberas y el repliegue hacia la selva y la paulatina aculturación19 del pueblo generada principalmente por dos procesos: la colonización y la expansión del capitalismo, marcando así, un corte en la relación hidrosocial simbiótica existente en el territorio a orillas del río Napo y muchos otros afluentes amazónicos.

3.1 El agua y el origen de la ciudad

La ciudad nace y crece pero también se reestructura y reconfigura sobre los restos del pasado. Simultáneamente y a partir del proceso de colonización de los Omaguas comienzan a tomar lugar diversos y multifacéticos hitos (**Figura 3.2.**) que empiezan a reconfigurar los asentamientos ribereños y cimentando de esta forma las bases que se convertirán en la ciudad actual.

A mediados del siglo XVI, se dan los primeros pasos exploratorios para colonizar la Amazonía ecuatoriana. En 1551 se establece como Gobernación de Quijos a lo que hoy sería parte de la región Amazonía-Norte, misma que toma dicho nombre de uno de los grupos que habitaban la zona intersectorial Andino-Amazónica. La denominación "Quijos" demuestra la falta de comprensión del territorio amazónico y sus sistemas en la época, pues, en la zona existieron varios grupos de importancia cultural cuyas prácticas denotaban complejidad y organización, contradiciendo la idea de una Amazonía deshabitada (Uzendoski 2004).

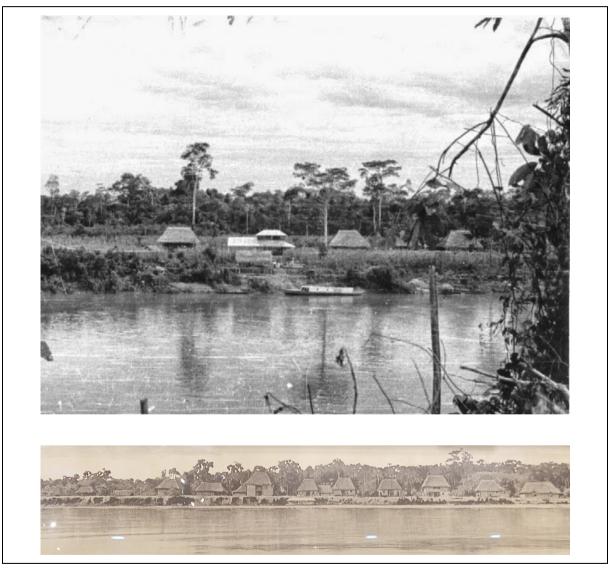

En esta época las delimitaciones (provincias o gobernaciones) más que una división político-administrativa, la cual beneficiaba principalmente al proceso colonizador, en el territorio funcionaban las unidades culturales, es decir, que la conformación de los asentamientos respondía a características culturales como lo son la lengua, la especialidad económica, y/o las prácticas materiales. Así mismo, en este periodo en el territorio del actual Coca, comenzaron las primeras construcciones e infraestructuras no autóctonas que cumplían primordialmente la

_

¹⁹En esta tesis no se profundiza en el proceso de colonización ni expansión capitalista de los Omaguas ni de los colonos, pero se recomienda la lectura de autores como: Cabrero (2022); y Jarrín, Carrillo Tapia, and Zamora (2016).

función de facilitar la entrada y el paso hacia el resto de la selva amazónica y propagar la colonización.

Figura 3.2.Línea de tiempo de los hechos históricos que generaron el desarrollo urbano de El Coca


Fuente: Elaborado por la autora con base al trabajo de campo, entrevistas, y recolección bibliográfica.

Los caminos usados por la colonización eran los ríos, ya que estos facilitaban la ocupación del territorio no solo durante la época colonial sino también durante la república (Valbuena 2008). A pesar de ello, los ríos resultaban imponentes y un reto para los colonos, el río era visto como un indomable que robaba tierra a las personas. Este cambio en la concepción del río se traslapa y sobrepone nuevas capas de construcciones hidrosociales en el territorio. Sin embargo, los ríos amazónicos mantienen su vínculo con las relaciones de poder inalterables. El río continúa comandando, dirigiendo y modificando la vida y las riberas son el espacio propicio para la producción urbana.

En la Amazonía ecuatoriana se encuentra en las riberas tres tipos de ocupantes: los colonos, los pueblos indígenas y la milicia (Nogueira 2003) (**Figura 3.3.**), la presencia de estos últimos nace como respuesta a los conflictos limítrofes y bélicos entre Ecuador y Perú, el boom

cauchero que hacen de la región una zona de renovado interés, y los proyectos de integración regional para articular el territorio nacional (Crespo et al. 1999). Paralelamente al vínculo ríoconquista, el vínculo río-economía se fortalece y la que hasta 1923 se constituía como una economía precapitalista, con el Boom Cauchero como preludio, en 1923 se establece en la cuenca del río Napo una economía enteramente capitalista que comienza con las exportaciones primarias de cacao, café, etc. (del Pilar Gamarra 1996), pero que rápidamente es gobernada por la actividad petrolera.

Figura 3.3. Vivienda ribereña y ocupación de la ribera del Río Napo por Naporunas

Fuente: Imagen 1: Registro de Vicariato Apostólico de Aguarico recuperado de https://www.vicariatoaguarico.org/joomla3/index.php/vicariato/ue-gamboa/857-fotos-de-gamboa-y-coca; Imagen 2: fotografía tomada durante el trabajo de campo en la exposicón permanente del MACCO.

En este periodo de transición de la economía precapitalista hacia el capitalismo, la identidad ribereña y los constructos hidrosociales cambiaron orientados hacia el sujeto que mantenía el

control y el poder sobre los flujos de agua y los recursos naturales. El señor ribereño es, durante el boom del caucho, el patrón cauchero. Los patrones caucheros además de gobernar las riberas, transformaron espacialmente y poblacionalmente a la Amazonía (Mongua-Calderón 2018). Al reproducir mecanismos como el concertaje, los patrones blancos mantenían a los indígenas en situación de "semi" exclavitud. Y la configuración espacial de las riberas gira en torno al caucho y los patrones y "sus" indios. Grandes haciendas ocupaban el paisaje hídrico y es así hasta el declive del caucho cuando estás quedan abandonadas y los patrones junto a los grupos de indígenas migran río abajo buscando nuevas oportunidades de desarrollo.

A partir de la exploración petrolera, se comienzan a ejecutar proyectos de infraestructuras viales y se da pasó a una migración constante motivada por la actividad petrolera y los servicios derivados de la misma. Los ríos ceden paulatinamente su rol de transporte y conexión a las vías que se construyen para facilitar el acceso y la explotación petrolera. Es a partir de 1950 que la ciudad actual de El Coca comienza a hacer su transición a ciudad petrolera. A pesar de que es a partir de este periodo que se observa una explosión urbana. El Coca desde antes fue considerado un punto clave y un puerto para los flujos e intercambios culturales y económicos de la región. Las construcciones, relaciones, y territorialidades que se construyen históricamente a partir de los ríos demuestran las dinámicas y los flujos de poder que se forjan en el espacio, dando como resultado casos de geografías menos o más desiguales o más o menos justas.

3.2 Memorias del río y la ciudad

"El agua es río y el río es memoria" así comienza Astelarra (2018) relatando su viaje hacia la memoria del agua de los ríos en el Bajo Delta del Paraná. Buscar las especificidades y reconstruir los procesos históricos generados por las dinámicas del agua son el objetivo de esta sección. Por ello y recurriendo a la memoria se teje un relato sobre la ciudad y el río y quienes la habitaron y la habitan. En la memoria descansan las relaciones históricas que mantiene la sociedad con el río, pero además, la memoria y sus elementos: el sentir y el rememorar, permiten trasladarse en el tiempo y dar voz a actores como los ríos, a través de las palabras de la vivencia significativa del territorio. En la memoria de Bolivia Uquilla y Polibio Pauker, los ríos: Napo, Coca y Payamino son una manifestación inmutable que mantiene frescas las memorias de una ciudad que nació y creció protegida por sus ríos.

3.2.1 Relato: La ciudad de los tres ríos

Llegamos a la desembocadura del río Coca y Napo, a un campamento que era del ejército en el tiempo de la guerra del 41 (...) cuando yo que llegué con mis padres en 1945, eso estaba botado, remontado, (...) llegamos acá porque el comandante del ejército de la bocana de la desembocadura de aquí, bajó a un punto que se llama "El Edén" entonces allá se ubicaron y comenzaron a mandar grupitos del ejército de 4 soldados y un sargento a Huiririma, a Tiputuni. Entonces ahí por medio de ellos subían al Edén, a recibir los víveres que les daban y llegaban a la casa de nosotros que vivíamos Sinchi Chicta (que quiere decir río fuerte, una ranura del río en kichwa). Entonces ellos le comentaron al comandante del Edén, que vivíamos nosotros que ya estábamos como dos años en una pequeña finquita y bueno cuando le comentan al comandante, él le escribe una carta a mi papá preguntándole:

-¿Por qué no viene a vivir en la desembocadura del Coca con el Napo? (Uquilla 2022)

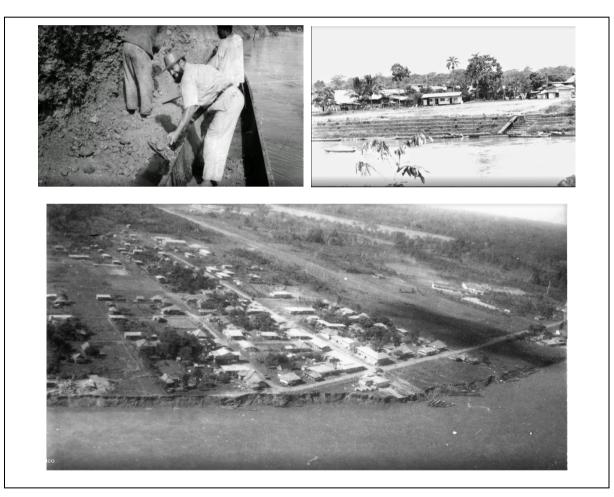
La llegada de Bolivia, quién tenía aproximadamente 12 años, a la bocana del río Napo y el Coca transcurre cuatro años después de la guerra de 1941 y en sus recuerdos, atravesar el río a remo y palanca era la travesía obligatoria para quienes querían adentrarse en la Amazonía ecuatoriana. Ella relata cómo a diario observó a soldados emprender un viaje que mínimo duraba una semana y que se podía extender hasta los 10 días. El rol de la familia de Bolivia era ofrecer hospedaje y comida para quienes estaban de paso, "una zona de descanso después de la guerra" y aunque menciona que en la Amazonía estaba todo abandonado, recuerda a la gente de la ribera:

La gente que era de la ribera han sabido vivir por el río Coca y por el río Payamino pero no daban señal de vida porque ellos vivían allá adentro (...) En toda la unión del Coca y el Napo, aquí era el campamento. De este lado (aclarando que era la ribera izquierda al bajar por el río Napo, donde actualmente se ubica la zona más antigua de la ciudad de El Coca). En el cuartel que hicieron los del ejército había tres casas grandes para los militares, de pambil y guadua. Paredes de guadua y pisos de pambil. Tres inmensas casas, la una era más retiradita seguramente era de los oficiales, era de piso bajo y las otras dos eran piso alto, doble piso, ya pues esas casas vinimos a habitar, pasamos años ahí, ya pues venían los militares y habían también los ribereños que ya como pasó la guerra volvieron a ubicarse en la ribera (Uquilla 2022).

Los ribereños mencionados por Bolivia son los patrones del caucho ecuatorianos que habían dejado anteriormente las riberas. Ante la pregunta de Polibio Pauker: "¿En qué parte

vivieron? ¿Cuáles eran, quiénes eran?" Bolivia menciona a dos familias caucheras que ocuparon el área de influencia de la bocana del Coca y el Napo:

Jorge Rodriguez fue el dueño del Eden, pero él ya había dejado eso por venir a trabajar el oro en el río Coca. Jorge Rodriguez se ubicó en el Payamino y Don Carlos San Miguel en el Coca. Ellos volvieron a bajar, Don Carlos San Miguel se ubicó en San Carlos y Don Jorge Rodriguez se ubicó en lo que se llama ahora Primavera. Entonces decían que querían ubicar un pueblito ¿Dónde?- se preguntó -Porque decían... bueno en el río Coca donde vivía la señora Margarita, que fue la primera enfermera de la sanidad. Bueno, los ribereños formaron un grupo (Don Jorge Rodriguez, Nestor Rodriguez, todos ellos), inclusive se llamaba..., mi papá era el secretario y formaron un grupo que se llamaba "Unión Ribereños". Ellos pensaban en las carreteras que hay ahora (...) entonces se ubicaron acá al otro lado del río Coca. Entonces ya se transformó la parroquia en una pequeña comunidad, que se llama ahora y que antes le decíamos caserío. Bueno, Don Jorge Rodriguez, Carlos San Miguel, Zoila San Miguel (hermana de Don Carlos), los Antanio, Emeliton Llori, Ermesto Rodriguez, todos vinieron a hacer sus casitas aquí. Abrieron una callecita que llenaban de arena, piedra no porque era escasa (...) e hicieron casitas hasta el fondo. La familia Llori que también estaban emplazados en la bocana del Zumo bajaron a vivir más abajito en lo que es ahora Amaronmesa. Entonces ya éramos una comunidad como se dice ahora. Esto ha de haber sido en el 1946, 47 por ahí, ya entonces los que podian salian, pues así, llendose a Puerto Napo y salían a palanca y a remo, pero se hacían como un mes, quince días, en la inmensa correntada arriba (Uquilla 2022).


En esta memoria se conservan los vestigios de la configuración espacial del caserío que fue arrasado por las crecidas del río Napo y Coca de 1954 y 1955. Estas inundaciones llevaron a la desaparición de las primeras casas y su reubicación en el lugar que actualmente es la zona consolidada de la ciudad. Sobre las crecidas del río Coca, Bolivia menciona lo siguiente y menciona por primera vez a los Waorani que en ese tiempo eran conocidos como Aucas:

Pero por la fuerza del río Coca, cuando crecía el río iba derrumbando y eso era un arenal, (...) cada que crecía se derrumbaba, bueno entonces ya cambiaron de idea (...). Vino una comisión de Rocafuerte (Nuevo Rocafuerte), vieron este lugar pero por el motivo de los Aucas dijeron que no, porque el gobierno prohibió que nadie viva a ese lado, entonces echaron el ojo a este lado. Aquí vivía yo, ya me casé con él que fue mi esposo, él andaba de comerciante ambulante y después se compró una casita de paja y pambil aquí (la vivienda de doña Bolivia actualmente). Este lugar que era de una indígena, una indígena creo que era de los señores Lloris que bajaron ya del Sur (...). Así es que se ubica el pueblito acá, como se llevaba el barranco toda la gente iba ubicándose en la ribera (...). En Providencia se ubicó Don Victor

Ron, todos los hijos de Don Victor se ubicaron en las riberas, pero antes eran más patriotas20 cada fecha cívica se reunían en el caserío. Venían y la gente traía sus cosas, se festejaba el día, se bailaba (Uquilla 2022).

Durante este periodo, se evidencia que la dinámica río-caserío era un continuo proceso de ocupación de la ribera, inundación y reconstrucción. A medida que el agua ganaba terreno, la ocupación se replegó pero procurando mantener el acceso al agua y la ribera. Así se configuran dos relaciones hidrosociales dominantes: la de agua-sustento y agua-riesgo, ya que, a pesar de las crecidas los colonos no podían adentrarse a la selva pues el río era su sustento diario.

Figura 3.4. Frente fluvial del río Napo durante la llegada de los primeros colonos

Fuente: Registro de Vicariato Apostólico de Aguarico recuperado de https://www.vicariatoaguarico.org/joomla3/index.php/vicariato/ue-gamboa/857-fotos-de-gamboa-y-coca.

_

²⁰ Modificada de patrióticos

Las tensiones y presiones entre el río y el caserío responden a los cambios morfodinámicos del río, principalmente del Coca cuya naturaleza arenosa complejizaba la construcción colona caracterizada por emplear técnicas constructivas enfocadas en la impermeabilización y la protección frente al agua (**Figura 3.4.**).

Del río, se bañaba, se tomaba, ni siquiera se hervía. El correo hacían a remo y palanca hasta Nuevo Rocafuerte y regresaban. Llegaban a una casa y tocaban una bocina. Se necesitaba el río para sobrevivir, para tomar, para lavar, para bañarse, el pescado también era bueno, no había dinamita, no había motores, no había nada, apenas las redes y tarayas. El río era..., si quiera se llevó unos 100 metros si no es más. Porque se oía lo que se conversaba aquí, al otro lado, ahora ya no. Entonces, todo eso era el barranco. Pasaba el tiempo, ya comenzó a venir más gente, vino la misión, después vino una compañía que se llamaba la Interoceánica. Que hizo su campamento en lo que es ahora el parque. Claro ellos pensaban hacer la carretera interoceánica, pero fue proyecto y quedó ahí pues (...) de aquí para allá teníamos sembrado maíz y algodón. El algodón se cosechaba y se vendía al Perú así en masa (...). Entonces todo eso se le cedió a la misión que cuando recién vino puso una tienda y el señor Héctor Noboa era el administrador (...). Más antes había un pequeño aeropuerto del otro lado, que construyó una familia Olaya (...). Pero todo eso se llevó el barranco y entonces le reubicaron acá en una casita de dos pisos de madera, era la misión arriba creo que vivían y abajo era la iglesia. Luego hicieron la otra iglesia que es ahora es la misión (Uquilla 2022).

Bastantes casas se hicieron, la interoceánica hizo bastantes casas, como era una compañía grande hicieron bastantes casas, tenían todo, lavandería, todo, todo. (...) En esa callecita, la Napo, el padre Alejandro Labaka hizo unas casitas, habían: una, dos, tres, cuatro casas (...). Esto era monte, antes de que sea la escuela Tamayo, mi esposo sembraba arroz, lo que es la Iglesia, era como lagunas, el agua filtraba y había el derrumbe, después de eso ha ido aumentando la gente, en el 72 ya se pobló (...). En la Armenia vivían un grupo de nativos, los Waos (Los Aucas), un grupo que trabajaba21 con doña Olimpia, porque Doña Olimpia también trabajaba por el Punino lavando el Oro (Uquilla 2022).

Con la llegada de las petroleras y los misioneros, la ciudad comienza a repoblarse mayormente con colonos y militares, y a su vez los pueblos indígenas ocupan las zonas aledañas. El río funciona como barrera entre los colonos y los indígenas y es de esta forma

-

²¹ Bajo la modalidad del concertaje

que el Napo se comienza a consolidar como un borde urbano que separa y protege. Finalmente, Bolivia culminó su memoria comentando sobre los Waoranis:

Los Waos eran nómadas, andaban por aquí, mataban por allá, así era. Después ya se pasaban a este lado a matar a la gente que vivía en la ribera. Y ellos andaban así, verá cuando la iglesia era ahí en la orilla, al otro lado asomaban, no asomaban, se oían, cantaban aves, púgiles, palomas, de todo, cantaban tigres, esos eran los Aucas. Aquí dicen que asomaban y la gente los veía pero se desaparecían, los iban a ver y habían huellas de lo que habían caminado (Uquilla 2022).

Figura 3.5. Primeras configuraciones urbanas e hitos arquitectónicos de El Coca

Fuente: Registro de Vicariato Apostólico de Aguarico recuperado de https://www.vicariatoaguarico.org/joomla3/index.php/vicariato/ue-gamboa/857-fotos-de-gamboa-y-coca.

Con la llegada de la misión capuchina a el Coca se comienza a desdibujar la barrera existente entre los indígenas y los colonos. La misión traza como primer objetivo el liberar a los indígenas que se encuentran víctimas del concertaje. Primero ofreciéndoles trabajo y finalmente cuando se liberaban se les otorgaba partidas de nacimiento y cédula²². Son muchos los hitos que marcan el desarrollo urbano de la ciudad, pero es a partir de la llegada de las empresas petroleras que se ve un proceso urbano acelerado de crecimiento en la zona y la región.

Entre las primeras formas que toma la ciudad se encuentran formas mixtas de vivienda. El paisaje hídrico del río Napo se compone por un mosaico de producción social de hábitat generado tanto por indígenas, colonos, misioneros y empresas petroleras. De estos actores de producción de hábitat se destacan los misioneros con construcciones que perduran como la catedral y el colegio (**Figura 3.5.**), es decir infraestructuras orientadas a cumplir su misión evangelizadora. Por otro lado, la infraestructura vial se desarrolla gracias a las petroleras, estas de igual manera para cumplir con sus intereses generan las vías necesarias para la exploración, explotación de petróleo.

Figura 3.6. Construcciones e infraestructuras que se cambiaron o abandonaron

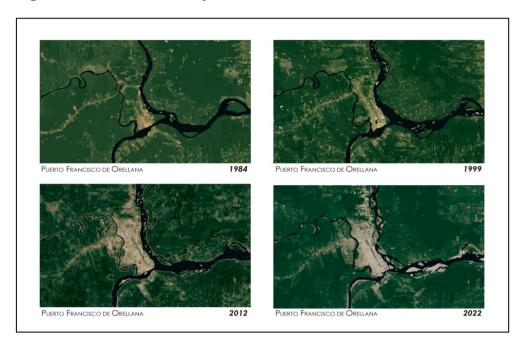
²² Dados los objetivos y alcance de la presente tesis, los procesos mencionados de concertaje y colonización no se profundizan, pero se pone a disposición entrevistas completas en los Anexos para mayor detalle y revisión.

83

Zona "Entre puentes"

Fuente: Primeras 2 Imágenes recuperadas de Alamy Foto de stock. En orden ID: 2F1W91H y GEYF6A; Imágenes 3, 4 y 5 relacionadas al antiguo Puente Alejandro Labaka, recuperadas de Revista Clubes (2013). http://revistaclubes.blogspot.com/2013/07/

A pesar de ello, no es hasta el periodo entre los años 2001-2010 que se observa en la ciudad una auténtica explosión urbana y una mayor presencia del Estado como agente de desarrollo. La realización de obras civiles como el nuevo puente, el malecón y el museo arqueológico generan y conforman finalmente el paisaje hídrico del río Napo representativo de la ciudad. De igual forma, existen elementos hidrosociales que se perdieron con el tiempo como lo son rumba naútica que operó hasta 2016 como una discoteca en el río, los muelles con entradas al río Napo y el antiguo puente "Alejandro Labaka" (Figura 3.6.) que marcan e influyen en el paisaje contrastivo actual.


3.2.2 Cartografía histórica de El Coca: un análisis morfogenético

La siguiente construcción cartográfica fue una herramienta espacial representativa que se construyó para explicar de forma espacial los procesos hidrosociales antes mencionados. Adicionalmente, estos mapas buscan evidenciar también las modificaciones urbanas e hídricas generadas por la actividad petrolera. En la Figura 3.7. se puede observar la mancha urbana y los cambios en los cauces de los ríos Napo, Coca y Payamino. Hasta el año 2000, el Coca debido a su tamaño y la expansión de la mancha urbana se consideraba aún como un centro petrolero consolidado pero aún en proceso de expansión. Es a partir del año 2003 y hasta el año 2010 que los mayores procesos de expansión urbana ocurren en la ciudad, además, la explosión urbana se confirma con el crecimiento demográfico en el periodo 2001-2010.

Al observar la evolución del tejido urbano y de los cuerpos de agua, es evidente que el río que más cambio ha sufrido es el río Coca y que estas modificaciones se proyectan aguas abajo por el río Napo. Así mismo, el cambio en la bocana Napo-Coca resulta relevante debido a la desaparición de una sección de la misma. En la Foto 3.1., se observa como el área de la

bocana se ha alterado desapareciendo totalmente, quedando en lugar una forma más ortogonal que sigue eje proyectado del río Coca en lugar de su borde sinuoso natural.

Figura 3.7. Evolución del tejido hídrico de los ríos de El Coca

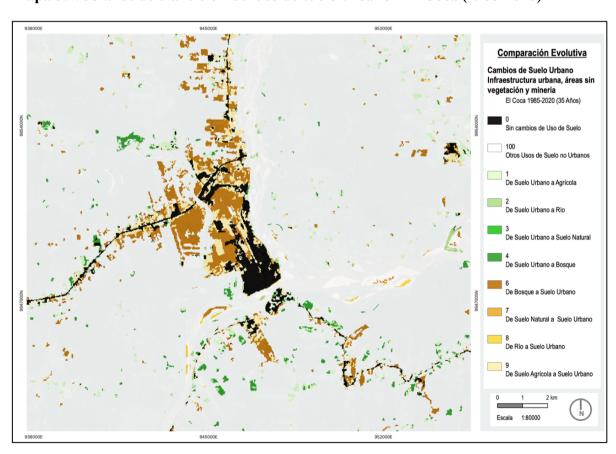
Fuente: Google Earth-Time Lapse, 2022

Foto 3.1. Imagen aérea de la bocana del río Napo y Coca en los años 80

Fuente: Registro de Vicariato Apostólico de Aguarico recuperado de https://www.vicariatoaguarico.org/joomla3/index.php/vicariato/ue-gamboa/857-fotos-de-gamboa-y-coca.

¿Cómo se puede saber si los cambios territoriales y fluviales son resultado de un proceso natural y no de la intervención antrópica? Se sabe que los ríos son entidades dinámicas, es decir, se mueven, crecen, disminuyen pero estos cambios se consideran abruptos cuando el tiempo de lectura de los cambios es muy corta, es decir la velocidad con que se desarrollan los cambios definen si los procesos responden a presiones y tensiones territoriales. Por lo tanto, en la lectura de los ríos se aprecia no solo los cambios estacionales sino también las alteraciones sufridas por el control, gestión y manejo de sus flujos.

La siguiente cartografía histórica de El Coca busca representar la dinámica variable de los ríos: Coca, Payamino y Napo, pero adicionalmente ofrecer una visión de la evolución del suelo urbano a partir de 1985 hasta 2020. La construcción de los siguientes mapas utilizó los datos libres de coberturas y usos de suelo generados gracias al Proyecto MapBiomas Amazonía (2022) y emplea un código condicional generado para realizar algebra de mapas y analizar cuáles modificaciones se han dado en el territorio y en qué nivel sucedieron para cinco tipos de uso de suelo: bosque, suelo natural no boscoso, cuerpos de agua, suelo agrícola, suelo urbano.

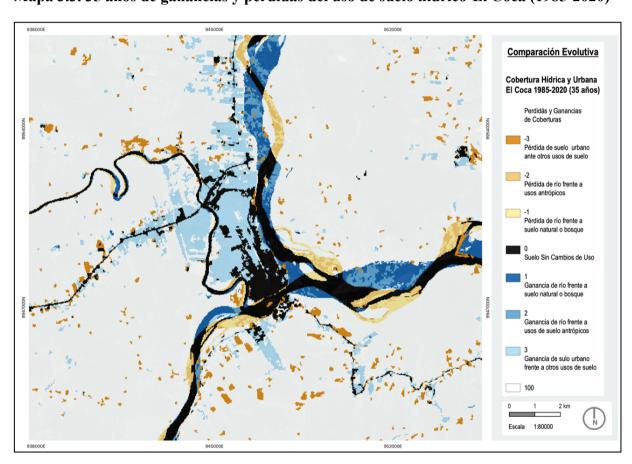

De Rio a Suelo Untono a Rio

Sussocial Secretary Rio Suelo Rio S

Mapa 3.1. 35 años de transición del uso de suelo hídrico - El Coca (1985-2020)

Fuente: Elaborado por la autora a partir de datos de coberturas y usos de suelo disponibles en el Proyecto MapBiomas Amazonía (2022)

El estudio de la morfodinámica de los ríos ayuda a comprender los caminos históricos del agua y las posibles rutas que estos pueden "recordar" y seguir cuando surgen eventos socionaturales mayores como las avulsiones fluviales (Singh et al. 2017). Generalmente, las avulsiones fluviales son eventos que ocurren en escalas de tiempo de siglos. A pesar de ello, existe evidencia de eventos raros en los que un detonante afecta los cauces causando daños a zonas pobladas aledañas o ribereñas provocando una avulsión fluvial con resultados catastróficos, como ejemplo de ello, está la ruptura en un dique en el río Kosi en la India en agosto de 2008 (Singh et al. 2017). Las desviaciones de los flujos de los ríos no son aleatorias, y aunque pueden surgir y generar nuevos caminos de agua, generalmente el río guarda en su memoria caminos de agua antiguos o abandonados. Al observar el **Mapa 3.1.**, se logra evidenciar que en el lapso de 35 años el río Coca ha sufrido un notable desvío de su cauce en la zona correspondiente al límite parroquial de Nuevo Paraíso.



Mapa 3.2. 35 años de transición del uso de suelo urbano - El Coca (1985-2020)

Fuente: Elaborado por la autora a partir de datos de coberturas y usos de suelo disponibles en el Proyecto MapBiomas Amazonía (2022)

Además se puede observar como el río Payamino es el único cuerpo de agua que prácticamente mantiene su cauce y en contraste, el río Napo muestra en esta cartografía las

crecidas y disminuciones de su ancho siendo la zona con más cambios la correspondiente a la bocana Napo-Coca. De forma complementaria al analizar el **Mapa 3.2.**, se evidencia como el crecimiento del suelo urbano, es mayoritariamente suelo ganado al bosque nativo, seguido del suelo agrícola. En contraste, es necesario mencionar que los cambios, ya sea de ganancia o pérdida, del suelo urbano frente al uso hídrico corresponden a pequeñas áreas en las riberas pero sin duda el suelo urbano se ha desarrollado y ha crecido manteniendo los corredores naturales de los ríos.

Mapa 3.3. 35 años de ganancias y pérdidas del uso de suelo hídrico-El Coca (1985-2020)

Fuente: Elaborado por la autora a partir de datos de coberturas y usos de suelo disponibles en el Proyecto MapBiomas Amazonía (2022)

Al observar el **Mapa 3.3.**, el mapa describe la interacción del uso de suelo urbano junto al uso hídrico y sus ganancias y pérdidas. Este mapa evidencia que en los 35 años comprendidos entre 1985-2020, los ríos ganaron territorio no solo al suelo urbano sino también a otros usos de suelo como el bosque nativo. Así mismo, se evidencia que las mayores pérdidas del río se dan frente al bosque y al uso de suelo natural no boscoso y no frente al suelo urbano. Finalmente esta cartografía, muestra no solo el cambio en el curso del río Coca y su fragmentación sino también es una evidencia tangible de que han existido presiones que han

llevado al río a su estado actual, por ello, y dada su repercusión en los paisajes hidrosociales actuales, se abordará presiones como: el terremoto de 1987, la construcción de la hidroeléctrica Coco Codo Sinclair, los derrames petroleros, la contaminación del agua y el proceso de erosión regresiva, en los siguientes capítulos empíricos.

El tercer objetivo relacionado con identificar el rol estructurante de los ríos y el agua en el crecimiento y expansión de la ciudad, así como la influencia en la identidad, la memoria y la configuración colectiva del territorio amazónico hídrico en la ciudad de El Coca (Puerto Francisco de Orellana), se ha demostrado al reconocer que incluso antes de la época colonial los ríos de la cuenca del río Napo jugaron un rol determinante en eventos como la colonización y la exploración de la Amazonía. Los ríos cumplieron funciones relacionadas con ser fuente de alimento y sustento en un incio de flujos comerciales promoviendo las economías de intercambio y posteriormente para economías precapitalistas como el comercio del caucho y la exportación primaria de productos como el café y el cacao, hasta economía capitalistas como la explotación petrolera.

Además de ello, los ríos cumplieron roles de vertebración espacial y urbana, configurando el espacio y las formas de habitar. Sirvieron tanto de barrera como también de zona neutral e interfase entre colonos e indígenas. Históricamente, los ríos Napo, Coca y Payamino han configurado el territorio y la producción de hábitat de sus riberas y su área de influencia y continúan influyendo y reflejando relaciones de poder y control dominantes generando patrones y tipologías de geografías del agua y de borde.

Capítulo 4. Lo doméstico y la escala humana: construcción de periferias de borde

En línea con la lectura territorial del pasado, para abordar la producción y construcción del territorio actual se vinculan tres escalas de estudio (micro, meso y macro), por ello, en los siguientes tres capítulos se estudia la construcción de territorios hidrosociales tejiendo una red multiescalar que comienza identificando las prácticas cotidianas, las modalidades de apropiación, y las significaciones creadas en torno a los ríos para comprender las fuerzas y actores que trabajan y se relacionan, creando flujos hidrosociales que responden tanto a los flujos del agua como recurso como también a los flujos de poder que controlan y dominan al recurso hídrico generando desigualdades, injusticias, marginalidad y desplazamientos.

Comenzar este estudio a partir de las formas de apropiación del agua, permite visualizar los procesos que se gestan a partir cotidianidades y cómo se generan respuestas ante fuerzas tangibles de actores dominantes y procesos gestionados y direccionados por las hegemonías. La escala doméstica y la escala humana permiten demostrar que la construcción desde el sujeto y el espacio vivido es donde nacen las dinámicas de resistencia, disputa y conflicto, y conquista. Los vínculos de la persona con el territorio constituyen las modalidades de apropiación en el espacio público, las infraestructuras y elementos socionaturales como los ríos. La relación río-ciudad comienza y termina en las personas y sus prácticas materiales.

En el Coca, las prácticas más representativas realzan el rol dominante de los ríos. En la actualidad, los rostros y la identidad de las personas ribereñas se encuentra difuminada. Cada barrio, cada vivienda y cada persona tiene una relación distinta con los tres ríos. Por ello, a lo largo de los ríos, Napo, Coca y Payamino, se incluyen la producción social de hábitat y las formas que toma la construcción de espacio público en sus riberas, así como también la

construcción del riesgo y la contaminación. Las relaciones hidrosociales observadas en los ríos se relacionan con cinco vínculos marcados: agua-transporte, agua-alimentación, agua-turismo, agua-resistencia y agua-territorio. A pesar de que estas conexiones seccionan el rol de los ríos en la discusión final del capítulo se realiza un montaje compuesto de las relaciones hidrosociales en cada eje fluvial y en El Coca.

4.1 Construcciones hidrosociales

La forma en que el agua se integra en el entorno construído toma muchas formas y se produce a partir de los vínculos estrechos con el agua creados por quienes viven en las riberas y más allá en zonas de influencia de los ríos. En los tres ríos de El Coca (Napo, Coca y Payamino) las formas de integración del agua en la vida y la producción urbana presentan similitudes en aspectos como la conectividad y el transporte; y disimilitudes en aspectos como el turismo, la vivienda y la infraestructura hidrosocial.

Las construcciones hidrosociales en las territorialidades de los ríos pueden tener un impacto significativo en la producción urbana, tanto positiva como negativamente. En la producción urbana, las actividades económicas tienen un lugar esencial debido a que es el dinamismo de la manufactura, el comercio y la prestación de servicios, el que hace que la ciudad crezca y prospere. Los ríos en ciudades portuarias tienen una significativa influencia en estos procesos de producción, pues proporcionan importantes enlaces de transporte, permitiendo que los bienes y las personas se muevan de manera más eficiente entre diferentes áreas, al igual que entre comunidades, y entre áreas urbanas y comunidades. De esta forma, toda actividad económica que dependa del movimiento de bienes y personas, depende de los ríos y el agua.

Igualmente, es necesario mencionar el uso básico y fundamental de los ríos, que es el de proporcionar importantes fuentes de agua para la vida y todas las actividades productivas urbanas, como la agricultura y la producción de energía (por medio de hidroeléctricas). La multiplicidad de roles que desempeñan los ríos, los transforma en elementos de alta vulnerabilidad debido a la susceptibilidad que tienen frente la contaminación de sus aguas, la degradación de sus riberas y la falta de protección de la fauna y flora de las zonas inundables.

Las ciudades que se desarrollan a lo largo de las orillas de los ríos generalmente desde su concepción buscan aprovechar los recursos hídricos, ya sea de forma empírica o experimental. Los cauces se aprovechan para mejorar su calidad de vida, por lo tanto, alser intervenidos estos también pueden tener impactos negativos. Ejemplo de ello son las inundaciones y la contaminación, la primera destruyendo o dañando infraestructuras y viviendas y la segunda

generando problemas que pueden ir desde la suspensión de actividades económicas como la pesca, hasta la privación de servicios básicos como la distribución de agua potable. Pero el río por sí solo, no genera estas externalidades, el riesgo es socionatural, es decir, creado por la aproximación u ocupación de zonas inundables o propensas a inundación por la actividad humana que degrada el ecosistema y construye así el riesgo.

En El Coca, se conjugan los dos tipos de impactos negativos mencionados anteriormente. Específicamente en el río Coca, el riesgo construido de las inundaciones generó reubicaciones, desplazamientos y procesos de desterritorialización, y por su parte, la contaminación por derrames de petróleo perturbaron no solo el flujo de las actividades económicas y de sustento dependientes del agua como la pesca, sino que ocasionó también una suspensión completa de la provisión de agua potable tanto a la zona urbana como a comunidades dispersas a lo largo de la cuenca del río Coca y del Napo.

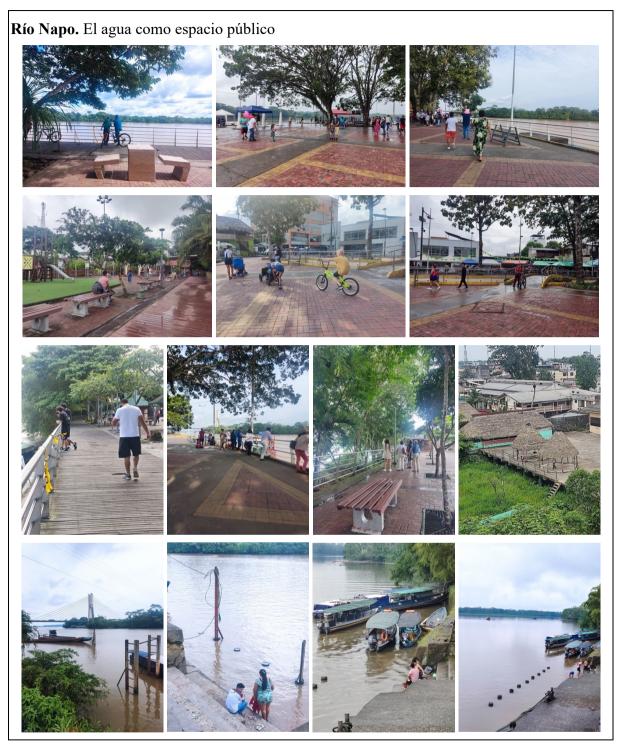
La contaminación y otras formas de degradación ambiental al afectar la calidad de los recursos hídricos ponen en riesgo la salud de las poblaciones urbanas y rurales. En general, la relación encontrada en los tres ríos de El Coca es compleja, dinámica y está influenciada por una variedad de factores físicos como el clima; históricos como la morfodinámica de los ríos; culturales como la cosmovisión del agua; o de infraestructura como la creación y operación de hidroeléctricas. Estos factores dibujan un bosquejo de las subjetividades hidrosociales que conforman los elementos de la identidad ribereña y los paisajes y escenarios del agua.

4.2 El gran río Napo: El eco ya no llega

En tiempos donde el río era una barrera entre "los Aucas" y los colonos, Bolivia Uquilla mencionaba en su relato el recuerdo del eco que atravesaba el río Napo, como lo que sucedía en una ribera del río se proyectaba en sonidos y llegaba a la otra ribera. Actualmente, el eco ya no llega de una ribera a la otra, debido tanto a aspectos físicos que han cambiado la morfología del río, como sociales, que han "disuelto" antiguas brechas, difuminándolas paulatinamente y trasladándolas a otros elementos territoriales (selva o bosque), y a su vez, formando nuevas brechas urbanas internas basadas en la segregación urbana de los nuevos pobres urbanos²³ de la ciudad.

²³ Estudio de la pobreza urbana localizada en zonas segregadas que la concentran y reproducen (Kaztman 2001).

La morfología del río empezó a cambiar gradualmente con el cambio de las canoas de remo por los botes a motor. Las ondas de agua producidas por el paso diario y constante de las canoas generó un proceso casi imperceptible para el ojo humano de erosión del suelo de las riberas, generando así, que el ancho del río aumente. En cuanto al rol del río como brecha entre dos "mundos", está mutó diseminándose con el repliegue de las comunidades ante el avance colono y el proceso extensivo de la ciudad. La ciudad creció y superó sus límites enmarcados por los ríos tomando una forma en la que los ríos dejaron de ser límites externos o últimos de la ciudad y más bien ahora se encuentran en proceso de ser ríos dentro de la ciudad que funcionan tanto como conectores como también límites internos entre zonas urbanas de la misma. Es por esto que en la actualidad se percibe un remanente del rol separador del río entre las dos riberas del Napo. Ahora el río separa y segrega la zona de expansión de la zona consolidada y esta jerarquía que se encuentra entre la zona consolidada y la de expansión se refleja de igual forma en el tratamiento de sus bordes urbanos. El frente ribereño del lado izquierdo del Napo, al igual que la ciudad, se consolida como la imagen urbana de los ríos, mientras el borde derecho se mantiene como un horizonte alcanzable pero a su vez distante de la vida urbana y la intervención pública y privada del Coca.


4.2.1 Los espacios del agua

Al recorrer el frente fluvial izquierdo o de la ciudad consolidada del río Napo (a partir de ahora denominado como frente fluvial consolidado del Napo), es natural usar como punto de partida el malecón y moverse desde ahí hacia cualquiera de sus direcciones. El malecón abre el frente fluvial a las personas y por ello, se convierte en el principal espacio del agua de la ribera y de la ciudad. El espacio público generado en la zona central del frente fluvial consolidado del Napo es indudablemente una relación y la ciudad misma.

El espacio público no es solo un lugar, es una relación, puesto que nace de la interacción que concibió y dio paso a la formación de las ciudades. Las ciudades tienen su origen en la necesidad de encuentro de las personas, es decir, la relación de intercambio social, cultural y económico es la gestora del espacio público (Borja and Muxí 2003; Carrión 2019). Por lo tanto la primera relación hidrosocial que se genera en los ríos es también la de ser un espacio público, o en este caso un espacio público del agua.

A partir del frente fluvial del Napo se extiende la ciudad hacia el noroccidente enmarcada por sus afluentes, Coca y Payamino. La ciudad tanto consolidada como en expansión de El Coca nace desde el frente fluvial del Napo, desde cuando éste frente fluvial era aún "el barranco".

Figura 4.1. Relación hidrosocial: agua y espacio público en el Río Napo

Fuente: Elaborado por la autora a partir de fotografías tomadas durante el trabajo de campo.

Actualmente, este frente fluvial toma la forma de los elementos que lo componen como el malecón, el puerto, el puente, las bocanas, y las zonas de viviendas ribereñas. De entre todos estos elementos, el malecón se ha convertido en un hito que representa a la ciudad y a los paisajes del agua. Además, este funciona como elemento urbano formando un corredor

jerárquico que permite y resalta el vínculo con el agua. De esta manera, en el malecón, como en los espacios públicos del agua generados a partir de la apropiación de este espacio, se logra evidenciar valores de integración paisajística. Estos últimos son necesarios para dotar al espacio público de elementos necesarios para la cohesión territorial evitando la fragmentación y la desvinculación de la producción urbana con el agua (Birche and Jensen 2018).

Las geografías del agua del río Napo son espacio público, ya que en ellos se generan las relaciones más fuertes del borde urbano. Además, es en esta zona donde se emplaza el Museo Arqueológico y Centro Cultural de Orellana (MACCO) incrementando los valores paisajísticos y culturales de la ribera. Se suman también a esta centralidad, zonas de venta de artesanías, restaurantes, un centro comercial y cine, el puerto fluvial municipal, y otros muelles privados y restaurantes acuáticos. Todos estos componentes de la zona central del borde generan una vivificación de las actividades comerciales, la apropiación del espacio y el aumento de prácticas culturales vinculadas al agua.

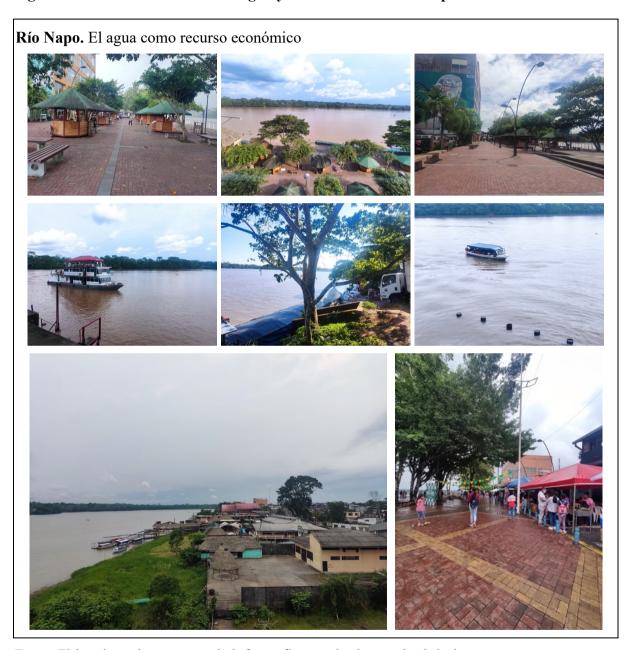
En la **Figura 4.1.**, se observa como la relación agua como espacio público se forma desde la interacción de las personas, desde ciclistas que se detienen para observar el horizonte o dar indicaciones, hasta los turistas que observan el curso del río, personas y niños que se bañan durante los días de calurosos, y personas que contratan los servicios de los botes y barcos. A diario las personas interactúan con el agua por medio del espacio conquistado del malecón, a pesar de ello, muchas de las personas que hacen uso de este espacio se consideran como población flotante²⁴. La identidad ribereña se víncula más profundamente a aquellos a quienes el río les brinda sustento económico.

Los barqueros son uno de estos perfiles urbanos, ellos son quienes consideran y conocen al río, saben las rutas adecuadas para navegarlo, conocen las corrientes y mantienen un respeto por el río que les permite realizar su labor. La identidad ribereña en el río Napo se forma en torno a la cotidianidad de la navegación. Además, para liderasas de comunidades Shuar o Kichwa que llegan a vender artesanías o hacer demostraciones culturales, la identidad ribereña sigue íntimamente conectada con la cosmovisión amazónica, en la que ellas y los demás son parte de la naturaleza y por ende se busca su cuidado, mantenimiento y protección.

_

²⁴ Personas que utilizan el territorio pero su lugar de residencia es otro.

En la ribera derecha del río Napo, la relación que se cumple es principalmente de servicio a las fuerzas armadas. Pero además de ello, debido al tamaño y estructura del nuevo puente, este se constituye como hito de infraestructura civil que contribuye a la formación del paisaje de agua y a la relación que se forma entre las riberas del río Napo. La conexión se encuentra simbólicamente expresada por medio del puente, y esta conexión es visible desde todos los puntos de los frentes fluviales como desde el río. Las relaciones hidrosociales que tanto turistas como habitantes de El Coca forman en el borde del río Napo se desagregan de la relación agua-espacio público, es decir, se forman distintas demostraciones que reafirman al espacio público como relación que permite a las personas la recreación, el compartir, el intercambio, el comercio o simplemente la conexión con la naturaleza y con la vida urbana de la ciudad.


La relación agua-recreación se desarrolla principalmente a manos de los niños, niñas y adolescentes, los cuales cada tarde salen en patinetas o bicicletas y recorren una parte del borde. Los niños y niñas prefieren mojarse los pies cuando el nivel del agua baja y cuando este nivel sube prefieren jugar bajo los grandes árboles. La relación agua-contemplación surge de forma casi inconsciente al llegar al frente fluvial. La contemplación de todos los elementos que conforman la ribera y el río es la actividad pasiva que se realiza junto a las cotidianidades del sector, es decir, el observar la pesca, el paso de las lanchas y canoas, observar el agua y su horizonte mientras la gente se traslada a sus lugares de trabajo o trabaja es natural e indispensable. Este dinamismo de actividades reflejan así la segunda relación representativa del río Napo: la relación agua como recurso económico.

4.2.2 Agua y economía

La relación hidrosocial de los espacios públicos del agua generan un alto impacto en la economía de El Coca. Pero la relación agua-economía no es necesariamente dependiente de la conformación de espacios públicos del agua, sino más bien es paralela e interrelacionada con ella. El espacio público se puede convertir en un potenciador de las relaciones económicas de los frentes fluviales, pero independientemente de él las dinámicas comerciales y de intercambio existen en la ribera de los ríos. En el río Napo esta dinámica entre la economía y el espacio público se cumple debido al rol de conector natural del río, es decir, que más bien es la relación agua-transporte del río Napo la gestora de las dinámicas económicas y de apropiación del espacio público del borde urbano. Es gracias a la movilización de bienes, servicios y otros que las economías a pequeña y gran escala de la ciudad se desarrollan. La importancia del puerto municipal así como de los muelles privados y/o de comunidades

indígenas recae en su labor de ser los puntos de abastecimiento de productos, movilización de cargas y pasajeros para las actividades tanto extractivas como también turísticas y de sustento diario, marcando profundamente esta fuerte relación socionatural de transporte-agua-economías.

Figura 4.2. Relación hidrosocial: agua y economía en el Río Napo

Fuente: Elaborado por la autora a partir de fotografías tomadas durante el trabajo de campo.

Adicionalmente, en el río Napo se puede decir que la relación agua-economía (**Figura 4.2.**) está presente y tiene un alcance mayor al de la relación agua-turismo y agua-espacio público. Pues fuera del área del malecón el paisaje del agua y las relaciones hidrosociales cambian hacia un espacio público del agua, inseguro, abandonado y a merced de grupos criminales

locales que toman las riberas como puntos de negocio y operaciones. Bajo el nuevo puente la falta de mantenimiento y de manejo de la ribera ofrece una imagen desolada cubierta de barcos y canoas abandonadas, incluso infraestructuras como el avión empleado en la construcción del Rumba Naútica y otros barcos-restaurantes se encuentran olvidados y sirviendo como guarida de animales y cuyo único vestigio de intervención humana son los grafítis y los restos de basura como botellas y colillas de cigarrillos. Pero incluso frente a estos escenarios, la relación agua-economía se abre paso. Al terminar el malecón en la zona oriental en dirección al puente nuevo, se encuentra el mercado indígena que es el punto de partida para una de las avenidas comerciales más dinámicas del Coca, la avenida Alejandro Labaka. Además continuando se encuentra una interfase en la zona del hotel de la misión, la cual es un área en la que se mezclan percepciones variadas sobre el espacio, para unos el lugar es de suma importancia debido a su puerto pero eso no lo exime de su estado deteriorado. Especialmente, cuando el nivel de las aguas disminuye, se perciben en la zona malos olores que salen de las tuberías que descargan las aguas servidas directo al río.

En la cotidianidad, el frente fluvial tiene sigue sus propios momentos de activación, la zona del mercado indígenas es uno de los espacios es despertar primero, debido a que la venta de productos como el plátano y la yuca comienzan a llegar aproximadamente desde las 5 de la mañana. El mercado se activa también con la venta de variedad de especies de pescado. Los dueños de restaurantes y comedores adquieren sus productos para la preparación de alimentos. El Coca es una ciudad relativamente caminable pero a pesar de ello, funciona con lógicas de grandes metrópolis. La mayoría de las personas comen afuera, cerca de su lugar de trabajo. Así mismo, cuando las población flotante sale de los campamentos petroleros ellos buscan estos comedores antes de partir y al regresar. Las calles céntricas son el escenario para la colocación de carpas de comida y a diario a partir de las 6 se encuentra diversidad de platos. Este flujo revela cómo es la vida en la ciudad y la importancia de las cadenas de servicios para la producción urbana.

Por el otro lado, en dirección a la bocana Napo-Payamino se encuentra un muelle abierto para la carga y descarga de víveres para el abastecimiento de las tiendas de las comunidades y pueblos ribereños río abajo (a lo largo del río Napo hasta Nuevo Rocafuerte). Este puerto se encuentra semioculto entre maleza, y a él se puede acceder solo después de atravesar un estrecho paso de casi 90 cm entre las viviendas y el borde del río. Después de este muelle comienza la zona de bosque protegido del río Payamino y esta zona culmina con la Playita de la Bocana, la cual a pesar de ser considerada como un atractivo turístico, es de difícil acceso

debido a falta de señalización y mantenimiento del bosque. Por ello, en esta bocana la principal apropiación es de personas que usan el amparo de los árboles del bosque como protección para la venta y consumo de drogas.

La relación agua-economía se produce y reproduce a lo largo de la ribera como resultado de las prácticas comerciales, y los modos de apropiación de los contornos del agua. El actual Hotel la misión forma parte de las pocas edificaciones con acceso privado a la ribera, además esta construcción es de carácter patrimonial puesto que aún conserva vestigios de la edificación antigua construida por los misioneros capuchinos. Los frentes fluviales del río Napo presentan distintas construcciones hidrosociales en sus bordes y estos repercuten formando un primer bosquejo de un espacio casi conquistado, pero ¿conquistado por quién?, dejando así para el final de este análisis multiescalar la interrogante sobre los bordes urbanos segmentados, desiguales e injustos. Espacios que reflejan no sólo la relación de poder en torno al agua sino también entre mestizos e indígenas y que se refuerza a través de diversos instrumentos tangibles e intangibles multiescalares.

4.3 La muerte anunciada del río Coca

El río Coca es uno de los afluentes más importantes del río Napo. Las relaciones hidrosociales actuales se gestaron años atrás, incluso antes de la construcción y operación de la Hidroeléctrica Coco Codo Sinclair y los continuos derrames de petróleo en los ríos. Después de los terremotos del 5 de marzo de 1987, cuyas magnitudes fueron de 6.1 el primero y 6.9 el segundo, existieron deslizamientos de tierra e inundaciones en muchas zonas aledañas al epicentro, particularmente el río Coca sufrió una transformación en su cauce y un debilitamiento de su suelo (Programa de las Naciones Unidas para el Medio Ambiente and Escuela Politécnica Nacional 2018). Actualmente se conoce que movimientos de tierra tan significativos como los terremotos mencionados tienen efectos que se prolongan en el tiempo especialmente en zonas como la Andino-Amazónica, es decir, que la cuenca del río Coca desde hace más de una década previo a la implementación de la hidroeléctrica Coco Codo Sinclair ya se encontraba en estado de vulnerabilidad.

Esto nos demuestra como todos los procesos de riesgo, contaminación y pérdidas que se viven desde hace unos años en el río Coca son resultado de una muerte anunciada que fue ignorada frente a los grandes beneficios económicos (Jiménez and Panchana 2021). Los efectos de la implementación de hidroeléctricas aún no se estudian completamente y no se logra ver su alcance completo en los procesos territoriales e hidrosociales, más aún en territorios de

fragilidad ecológica como la Amazonía, en la cual proyectos como este, tienen una alta posibilidad de convertirse en elefantes blancos²⁵ olvidados por las autoridades y quienes los concibieron pero muy presentes en la configuración territorial que los rodea.

En la Amazonía y en todo el territorio nacional, las hidroeléctricas son el mayor consumidor de los recursos hídricos (Programa de las Naciones Unidas para el Medio Ambiente and Escuela Politécnica Nacional 2018). Por ello, el análisis de la influencia de la hidroeléctrica Coco Codo Sinclair en el río Coca y la cuenca del Napo se analizan a profundidad en el capítulo de discusión haciendo una conjunción multiescalar de los procesos y lógicas territoriales en la cuenca. Pero se hace mención de esta infraestructura porque su repercusión alcanza y tiene grandes impactos en la escala diaria y humana del río Coca.

En el caso del río Coca, los eventos regionales mencionados trascendieron y se reprodujeron en todas las escalas. Siendo así que en la escala micro, el río Coca ha pérdido la mayoría de sus vínculos con la ciudad. Desde relaciones agua-turismo que generaban un corredor dinámico y vivo en la zona de "La Playita" hasta la relación agua-identidad de quienes no han podido reubicarse y continúan viviendo en las riberas con recelo y miedo ante la contaminación, la erosión y las crecidas. Sin duda, uno de los grupos más afectados en la zona de influencia del Coca es la comunidad de San José, quienes se arriesgan a diario al cruzar sus aguas correntosas para vender sus productos o en el caso de los niños y adolescentes asistir a la escuela y el colegio en el Coca. Para ellos, el río Coca es conexión, el río no es el causante de los males, sino que es quién a pesar de las distintas externalidades continúa brindándoles una oportunidad de inserción exitosa en la economía global²⁶ actual.

4.3.1 Agua y contaminación

Con lo antes mencionado, se constituye la relación agua-resistencia como la principal en el borde urbano del río Coca y se caracteriza por construirse a base de históricas presiones vinculadas principalmente a la contaminación que ha teñido las aguas de negro, ha dejado las riberas cubiertas de arena que continúa cediendo y árboles y vegetación que se resiste a ser arrastrada por la corriente. Desde su bocana y aguas arriba, en el río Coca se construyen

²⁶ Que organiza los servicios, la producción y la gestión de bienes de manera planetaria.

²⁵ Obras o infraestructuras cuya implementación requirió grandes cantidades de recursos y capital pero que no presentan un beneficio equivalente a quienes habitan la zona, o incluso ocasionan lo opuesto, generando grandes pérdidas a las poblaciones aledañas y grandes costos de recuperación por lo cual se abandonan y "olvidan".

relaciones hidrosociales vinculadas a las personas y sus cotidianidades como lógica de resistencia ante las reubicaciones, la desterritorialización y la contaminación.

Figura 4.3. Relación hidrosocial: agua en disputa en el río Coca

Fuente: Elaborado por la autora a partir de fotografías tomadas durante el trabajo de campo.

En la bocana Napo-Coca, la resistencia se da tanto en familias antiguas, que llevan años adaptándose a vivir en la ribera en sus comienzos levantando sus viviendas en palafitos, y aumentando cada vez más la altura de la vivienda según las crecidas del río y la bocana o realizando rellenos para aumentar el nivel del suelo; como también en familias recién

llegadas, que acceden de forma informal a las riberas y las ocupan en un proceso de invasión, en el que la vivienda no necesariamente se adapta a las inundaciones.

En la **Figura 4.3.**, se evidencia en sus primeras tres fotografías como en el barrio ribereño Unión y Progreso, se realizan adecuaciones del espacio público de la ribera gestionadas e implementadas por la organización barrial. Los espacios públicos del agua del río Coca, se contraponen a los del río Napo empleando formas de apropiación que responden a las necesidades del barrio, existe una cancha de fútbol con divisiones y arcos montados con ramas y troncos secos, zonas de descanso con hamacas debajo de las áreas de sombra de los árboles y columpios hechos de llantas que cuelgan de los árboles más grandes. De igual manera existen senderos de acceso al río, especialmente hacia pequeñas zonas de arena.

Otra de las adaptaciones del frente ribereño realizado en el río Coca, es la observada en las siguientes fotografías correspondientes al barrio Perla Amazónica, en el cual se generó un frente de contención y control de cauce con un muro de piedra. En la zona existe acceso al agua pero debido a la diferencia de altura entre el muro de piedra y el nivel del agua no existe un acceso libre al río. Generalmente, se observan volquetas entrando y dejando escombros de construcción o material pétreo, pero la presencia de las personas es limitada. Así mismo, en una de las últimas imágenes podemos observar como uno de los accesos al río desde la parte alta del barrio Río Coca, cuenta con áreas de bosque más compactas pero así mismo con poca intervención pública, cabe mencionar que el desagüe de aguas observado corresponde en su mayoría agua lluvia, y es más bien el poco mantenimiento del sendero el que difículta el acceso al río y al paisaje de agua.

4.3.2 Agua y niñez

Las ciudades reproducen desigualdades al limitar el derecho a la ciudad de los grupos sociales más vulnerables que conforman la ciudad. En la ciudad latinoamericana, las infancias son uno de los grupos menos representados a nivel urbano y con un acceso limitado al espacio público. Así como las ciudades pueden ser morfológicamente injustas para los niños y otras minorías de varias maneras, los espacios del agua también pueden ser injustos con este grupo en específico. Una forma en que las ciudades multiplican injusticias es a través de la distribución desigual de los recursos, como parques, áreas de juego y otros espacios recreativos, hasta la falta de diseño y disposición de los elementos urbanos infantiles. Adicionalmente, los niños y niñas pueden tener acceso limitado a estos espacios urbanos, particularmente si viven en áreas con altos niveles de pobreza.

Figura 4.4. El río Coca a través de las infancias

Fuente: Dibujos de los niñas y niñas del barrio Unión y Progreso trabajados junto al río Coca.

La morfología de las ciudades puede crear barreras físicas que limitan el acceso tanto a oportunidades como la educación y la salud, pero también la morfología de la ciudad puede

limitar el acceso a espacios de agua seguros. Los niños y niñas también pueden ser más vulnerables a los peligros ambientales, cuando no existen espacios adecuados para su uso, en el caso de ciudades ribereñas el riesgo a inundación, deslizamientos y erosión de los suelos son parte de los peligros ambientales a los que se enfrentan los niños y niñas.

En el Coca (**Figura 4.4.**), la mayoría de los niños que viven en las áreas ribereñas y sus zonas de influencia crean lazos con el río y el agua por medio de la recreación y el juego. A pesar de las advertencias sobre boas, crecidas y corrientes, los niños mantienen una relación hidrosocial basada en el juego. La relación agua-juego es una forma de resistencia territorial en el borde urbano del río Coca. Es por la necesidad de juego de los niños que en la ciudad se construyen espacios de agua como los creados en el barrio Unión y Progreso.

Además, el culto al agua reluce como parte del imaginario de los niños y niñas, a pesar de no haber visto una boa en el río, ellos tienen presente su existencia en el agua. Eso nos indica que parte de la cosmovisión de los pueblos selváticos que se mantiene principalmente de forma oral se mantiene y se hereda a las generaciones más jóvenes. En la relación hidrosocial aguahistorias se crea el imaginario de los niños y niñas, para quienes la boa o la anaconda, son más que animales que gobiernan los ríos, también son los animales generan temor hacia las aguas profundas y de forma indirecta les previenen del riesgo. Por medio de las historias y los cuentos, se logra construir el temor y respeto por el río a pesar de la construcción hidrosocial como espacio recreativo.

4.4 Calmo y silencioso: Viviendo en la ribera del río Payamino

El río Payamino históricamente es el que ha sufrido menos cambios bruscos en su morfología. Actualmente este río y sus riberas están viviendo un proceso de relevancia territorial tanto en aspectos de dotación de vivienda, como en aspectos de dotación de agua potable y alimento. En el río Payamino las relaciones hidrosociales se construyen simultáneamente y en torno a la vivienda. Al vivir en la ribera, las personas practican actividades como la pesca, la navegación, la recreación, y también la resistencia.

Las ciudades crecen fuera de sus límites urbanos y se expanden principalmente siguiendo ejes viales y en algunos casos, donde los ríos son relevantes morfológicamente, estos también se convierten en ejes de expansión urbana. En el caso de El Coca, el río Payamino es uno de los ejes de expansión urbana de la ciudad. En el río Coca, las dos riberas a partir de la zona ubicada a la altura de los barrios Luis Guerra y Nuevo Coca se encuentran consolidadas o en proceso de consolidación urbana. Este hecho, hace que las relaciones hidrosociales del río

Payamino y la identidad ribereña de quienes habitan ambos bordes urbanos se vinculen estrechamente con la vivienda y el agua.

4.4.1 Agua y vivienda

El río Payamino es fuente de relaciones hidrosociales fuertes con sentido de pertenencia y cuyos modos de habitar se reflejan en los aspectos identitarios comunitarios e individuales de sus habitantes. El río Payamino tiene prácticamente toda su ribera oriental ocupada. La zona de expansión localizada en el barrio Nuevo Coca toma como punto de partida el eje fluvial del río Payamino y se proyecta en dirección al occidente siguiendo paralelamente el eje de la vía transversal norte (E20).

En el río Payamino se observa un mosaico de adaptaciones de los modos de habitar junto al agua (**Figura 4.5.**). El principal mecanismo empleado en la construcción de hábitat se basa en generar una zona transitoria de escorrentía combinada con huertos para los momentos de lluvia. En barrios como Paraíso Amazónica, que se encuentran en una cota mayor en relación a los barrios de la zona consolidada, no temen al riesgo de inundación pero sí emplean medidas como el relleno y la siembra de árboles nativos para evitar tanto la erosión del suelo como también el desbordamiento de los esteros. Las viviendas ribereñas que cuentan con acceso al río están generalmente diseñadas de forma que combinan la construcción que busca impermeabilizar el suelo con la construcción ribereña basada en permitir el aumento del nivel del agua.

En palabras de las personas que viven junto al río Payamino, la vida junto al río es tranquila y fresca, para la mayoría de ellos el río ofrece una respuesta a muchos aspectos de la vida cotidiana. Existen familias que cuentan con dos viviendas, una en la ribera para tener su propio muelle para canoas para navegar y pescar, y otra unas cuadras adentro en la ciudad.

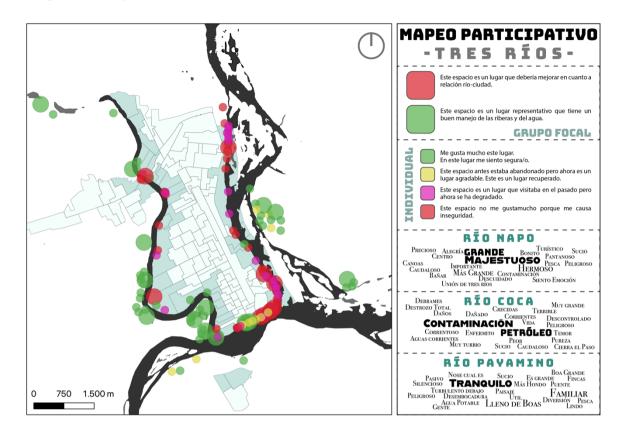
Así mismo, existen familias que comparten esta modalidad de territorialización multisituada y tienen una vivienda tanto en las riberas del Payamino para acceder a los beneficios de vivir en la ciudad y a su vez cuentan con otra vivienda en comunidades aguas arriba o abajo en el río Napo. La forma de habitar la ribera responde a dinámicas territoriales que se localizan en varios puntos a la vez. La vivienda se construye en base a la necesidad de acceso al agua, pero también en base a la necesidad de suelo urbano. En la lucha por formar parte de la ciudad, la ribera protegida desaparece para ser una ribera ocupada.

Figura 4.5. Relación hidrosocial: agua como proyección de la vivienda en el río Payamino

Fuente: Elaborado por la autora a partir de fotografías tomadas durante el trabajo de campo.

Por lo tanto, el borde del río Payamino es uno asediado y ocupado. Casi la totalidad de su ribera se encuentra habitada, pero estos bordes son también bordes entrecortados, cuyo acceso al agua no es continuo, ya que en el acceso a la ribera chocan los intereses de las petroleras contra los intereses de los pequeños pescadores y navegantes, contra el interés del espacio

público y el derecho a la ciudad y al agua. Este borde se considera como entrecortado por que tanto los muelles petroleros como los domésticos, cortan la continuidad del paisaje generando solo cierto "huecos" para la apropiación pública limitada del borde.


4.5 Subjetividades en torno al río

Las subjetividades generadas en torno a los cuerpos de agua se vinculan a las relaciones hidrosociales y al igual que estas comprenden interacciones y prácticas sociales, políticas y económicas para dar lugar a los imaginarios urbanos de las geografías del agua. Entre la subjetividades encontradas se encuentran: I) las que reflejan procesos marcados por el ciclo hidrosocial de los flujos del agua y su gestión; II) las subjetividades generadas por la periurbanización y periferización de los bordes de río; III) las subjetividades relacionadas con de la ecología, vinculadas al daño y degradación ambiental, a la construcción del riesgo, e incluso procesos de reparación ambiental; y IV) subjetividades vinculadas a la representación y la identidad ribereña.

Las subjetividades y la identidad ribereña de El Coca se ven marcadas por las prácticas en torno al agua y el río. Las personas crean imágenes de cada río y lo asocian con experiencias propias o colectivas. Para reconocer este imaginario colectivo sobre los ríos se realizó un mapeo participativo con la finalidad de identificar tanto puntos de conflicto en los bordes, como también identificar zonas con potencial para la creación de bordes urbanos más justos.

En el siguiente mapeo participativo **Mapa 4.1.**, se identificaron 4 tipos de espacios ribereños: I) los espacios de agua que brindan seguridad y con alta aceptación (verde); II) los espacios de agua que han sido renovados y se encuetran en proceso de apropiación (amarillo); III) los espacios de agua que ha perdido sus valores paisajísticos ya sea debido al abandono estatal o a otros agentes exógenos (fucsia); y IV) los espacios del agua que causan inseguridad y se podrían considerar como vacíos urbanos (rojo).

En el mapeo se evidencia como en el imaginario colectivo se construye tanto individualmente sobre cada río pero también de forma colectiva para los tres ríos de la ciudad. El río Napo es la imagen de la ciudad, el río representa la grandeza y la majestuosidad. El río Coca se víncula a en el imaginario colectivo con la contaminación, el petróleo y los derrames. El río Payamino es el río tranquilo, el que incluso se confunde de nombre o se olvida pero que se mantiene presente en los procesos hidrosociales de la ciudad. Existen centralidades de inseguridad pero que en realidad se asocia a todo el borde urbano, es decir que en la construcción de subjetividades una dinámica se reproduce y proyecta en el territorio.

Mapa 4.1. Subjetividades territoriales hidrosociales en El Coca

Fuente: Elaborado por la autora con base a encuestas, entrevistas y mapeo participativo.

4.6 La ciudad de los tres ríos: cotidianidad, identidad y riesgo

El objetivo de este capítulo fue el de identificar y describir las relaciones hidrosociales encontradas en los ejes fluviales de los ríos Coca, Payamino y Napo y las prácticas materiales y subjetividades en torno al río en El Coca (Puerto Francisco de Orellana), mismo que se cumplió en significativamente al evidenciar cómo las prácticas las relaciones hidrosociales dominantes en cada río marcan la subjetividad de cada eje y de la ciudad.

El río Napo, como corredor dominante para la identidad Coqueña pero en menor medida para la identidad ribereña, es la imagen representativa de la ciudad. El frente fluvial consolidado del río Napo representa el punto de partida de la ciudad y los espacios de públicos del agua, En contraste, se muestra las bocanas con los ríos Payamino y Coca, como puntos del corredor que se contraponen a la imagen representativa de la ciudad, construyendo un borde urbano que no es en su totalidad justo. Las bocanas se construyen desde la informalidad y en medio del abandono, generando un escenario de desigualdades e injusticias. La relación agua-espacio público es la clave para limar estas diferencias, pues el espacio del agua construido en el frente fluvial es una conquista que fomenta el turismo de nacionales y extranjeros y que

integra a las comunidades Shuar y Kichwas, esta conquista debe seguir siendo potencializada para que la integración en el territorio hidrosocial del borde del río Napo se extienda hacia las bocanas y el otro frente fluvial que se encuentra segregado actualmente de la ciudad. De esta manera se demuestra que la relación de agua-espacio público es clave para la justicia social en espacios ribereños y en la ciudad, y para intensificar relaciones justas de turismo-agua-economías.

El río Coca, en contraste desde la escala humana y cotidiana se dibujan territorialidades marcadas por la contaminación. La muerte del río Coca, es una analogía a las presiones sufridas en la cuenca hasta generar una casi desaparición de sus espacios del agua. A pesar de los procesos de reubicación y desterritorialización vividos, existen muestras de resistencia y lucha por recuperar la relación natural de las personas y el río a pesar del riesgo socionatural de habitar sus riberas. Desde la perspectiva de las infancia se evidencia un vínculo significativo que se genera al vivir cerca del río. Para los niños y las niñas, el río ofrece un espacio de interacción llamativo y divertido pero también se crea una conciencia precautelar en torno al mismo. El río Coca es una vena abierta en el territorio pero que las personas se niegan a sangrar, no solo por los vínculos con el agua sino también fuertemente motivados por que son las riberas del Coca las que ofrecen un refugio para quienes no encuentran acogida en otras zonas de la ciudad.

El río Payamino, es un eje fluvial que va ganando relevancia e importancia. Sus riberas son las más ocupadas y en ellas se encuentra un gran diversidad de apropiaciones, siendo la más significativa la relación agua-vivienda. Desde zonas consolidadas, legalizadas hasta zonas, dispersas, informales y efimeras, la ribera del Payamino posee una amalgama de producción social del hábitat y vínculos con el agua. Los espacios colindantes a cuerpos de agua son considerados como elementos clave en la potencialización y mejora del hábitat (Birche and Jensen 2018). Y los espacios ribereños del Payamino que se producen mayoritariamente de forma social dotan al espacio vivido de valores identitarios y culturales. El río Payamino y sus riberas son un espacio deseado y apropiado, en los que son más bien las zonas de bosque protegido las que se convierten en espacios de inseguridad debido a la falta de mantenimiento e inversión. Sin embargo, desde el punto de vista del espacio público también se observan formas desiguales de apropiación de las riberas y acceso al agua. La identidad ribereña se construye más fuertemente en el río Payamino, pero así mismo se construyen estereotipos e imaginarios sobre las personas ribereñas que viven en los barrios del río Payamino los cuales se difuminan al observar la creación de mecanismos para tener una mejor habitabilidad.

De esta manera, en esta lectura hidrosocial la ciudad de los tres ríos se caracteriza por un componente de relaciones dominantes vinculadas a la vivienda y la economía y otro componente caracterizado por un precepto socialmente construido de periurbanización de las riberas. Las subjetividades construidas en los ríos evidencian procesos macro escalares, como lo son la contaminación para Coca y la imagen de ciudad para el Napo. Mientras el Payamino tiene una construcción hidrosocial de escala local que en el futuro puede adquirir relevancia a escala macro-regional.

Capítulo 5. Lo urbano y lo comunal: espacios públicos del agua

La escala meso es la del ciclo hidrosocial y permite conocer los flujos internos de la ciudad y sus ríos trabajado por medio de en un análisis de composición y configuración de los paisajes del agua para la formación de patrones y tipologías urbanas de borde. Sabemos que el ciclo hídrico estudia al agua como un elemento principalmente físico cuyas interacciones se ven marcadas por el movimiento del agua a través del mismo. Pero como el agua es un elemento socionatural, los flujos del agua que recorren su ciclo se ven fuertemente influenciados por factores políticos y sociales además de los físicos y ambientales. Los aspectos físicos como la topografía, el clima y la vegetación marcan el ciclo hidrosocial en aspectos como la elección de zonas adecuadas para la implementación de infraestructuras hídricas, en cambio, los aspectos sociales, culturales y políticos marcan como diversos actores se relacionan con el agua, como la manejan y controlan para seguir un interés ya sea colectivo o privado.

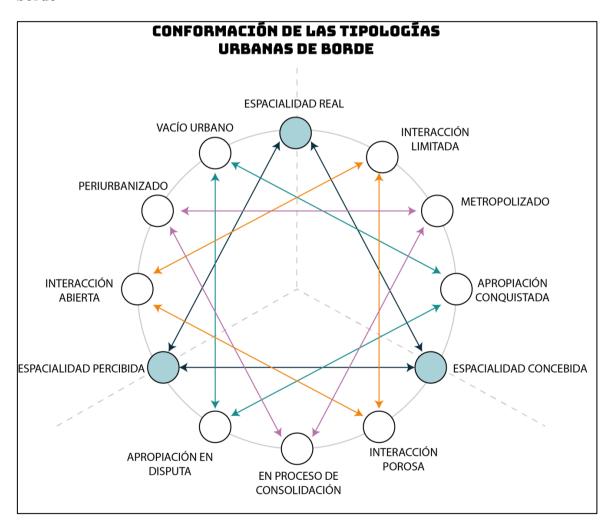
Además, se conoce que la distribución de ríos y lagos está influenciada por la geología subyacente y la topografía de una región. Las regiones montañosas a menudo se caracterizan por ríos de movimiento rápido y topografía empinada, mientras tanto las áreas más planas tienden a tener ríos de movimiento más lento y lagos más grandes y estables. En la Amazonía ecuatoriana geológicamente existen estos dos tipos de topografías, la zona de piedemonte es una zona con topografías empinadas que generalmente hacen que la navegación se dificulte, pero en cambio si se vuelven propicios para el aprovechamiento energético. En la cuenca del río Napo, su afluente, el río Coca tiene presentes estas dos modalidades lo cual lo ha convertido en un río de importancia para la región y el país, pero también a escala micro y meso para transportación y provisión de agua y alimento.

Manteniendo esta transición desde la escala micro a la escala meso. Se comenzará este capítulo analizando los recortes territoriales en los tres ríos y la formación de tipologías urbanas de borde, lo cual permitirá llegar junto con el estudio del ciclo hidrosocial urbano de la ciudad de El Coca, al análisis de elementos regionales que redireccionan los flujos de agua hacia los flujos de poder y como estos molden desde el espacio hasta conformar escenarios de desigualdad pero también de oportunidades.

5.1 Patrones urbanos en los bordes de El Coca

En la escala micro a través del análisis de las relaciones que se forman en los ríos ya se logró un bosquejo de la desigualdad presente en los bordes urbanos que constituyen los ríos de El Coca. La urbanización amazónica y la economía global transforman cómo se ocupa el territorio amazónico. Además estos dos procesos están estrechamente ligados a la búsqueda de formación de redes y sistemas que faciliten el conseguir una posición clave para las ciudades en las redes globales. En esta búsqueda, el crecimiento de las ciudades se ve configurado de forma explosiva y siguiendo dinámicas que se apartan de las dualidades: lo urbano y lo rural, lo natural y lo construido; y se ubican en gradientes que entremezclan estos conceptos. El borde urbano es un ejemplo de ello, al analizarse a un río como un borde urbano, en él se observa un gradiente de formas de ocupación que van desde la zonas de alta densidad y consolidación hasta zonas de producción periurbana, así mismo el río pasa a ser un elemento socionatural, modificado y modificador de lo construido.

La delimitación de los bordes urbanos es un tema de gran importancia para los Gobiernos de las ciudades. Esta abarca tanto el concepto de soberanía y control como el de ciudadanía y acceso a servicios urbanos, e implica la dotación de infraestructuras de movilidad, de servicios, vivienda social y equipamientos públicos, entre otros. Este ejercicio de delimitación tiene además una importante dimensión morfológica que determina la condición espacial misma de los territorios, es decir, los hace definidos, difusos, extendidos, compactos o porosos (Villamizar Duarte and Talavera Dávila 2018, 12).


Para conformar una idea clara de las morfologías del agua se analiza a la desigualdad como un conjunto o variación de diversas tipologías en un borde urbano. El espacio hidrosocial es así mismo una suma de construcciones hidrosociales que se contraponen, se resisten o fragmentan el espacio continúo del borde urbano. En El Coca, ya se evidenció la existencia de desigualdad territorial en los frente fluviales al analizar las relaciones hidrosociales, llevando estas relaciones a la producción del hábitat, se consolidará la existencia de desigualdades a nivel de bordes urbanos.

5.1.1 Acceso al río: derecho o privilegio

El acceso al río es la clave para definir las tipologías de borde. Si el acceso al agua se limita o se privatiza el derecho a la ciudad y la justicia social no se consigue. Así mismo, cuando se logra romper la privatización y mercantilización del agua se puede lograr conformar bordes urbanos más justos.

En El Coca, el acceso directo al agua se puede definir en dos grandes categorías: de acceso público y de acceso privado. Esto debido a que aunque no existe un proceso de privatización completa del agua, el acceso a esta desde las riberas se ve limitado.

Figura 5.1. Teorías urbanas aplicadas a la conformación de las tipologías urbanas de borde

Fuente: Elaborado por la autora con base a conceptos teóricos disponibles en: (Villamizar Duarte and Talavera Dávila 2018)

Para definir teóricamente la conformación y composición de las tipologías urbanas de borde: se emplea una combinación de diversas teorías: I) la del borde urbano como franja de

contacto, es decir, que este borde se caracteriza por la interacción la cual permite el intercambio en todos sus niveles (Villamizar Duarte and Talavera Dávila 2018); II) el borde urbano como complejidad, es decir una red de flujos tangibles e intangibles que forman una "articulación de contradicciones", un calidoscopio compuesto por fragmentos que funcionan bajo lógicas de caos (Buitrago and Restrepo). III) la unificación de los bordes para la generación y desarrollo de geografías desiguales (Harvey 2021), mismas que se transforman fuera de sus límites administrativos.

Estos conceptos se relacionan para formar los criterios de conformaciones tipológicas de borde (ver **Figura 5.1.**). La base de esta construcción relacional toma como base la teoría de la producción del espacio de Lefebvre (1974), en la cual el espacio concebido, desde las formas de organización producidas y reproducidas a manera de patrones territoriales temporales; el espacio imaginado o percibido, desde las subjetividades y la inmediatez; y el espacio vivido como expresión última y temporal de la vida cotidiana; de esta manera se modifican los niveles de apropiación, de interacción y de consolidación urbana para llegar hacia los espacio justos y conquistados o tipología que componen los espacios injustos y desiguales.

El proceso de establecer tipologías urbanas ribereñas o del agua implica reconocer en el territorio de borde las dinámicas operantes relacionadas a los flujos del agua y los flujos de poder. Se analizaron 6 transectos de producción urbana de borde en el río Payamino y en el río Coca respectivamente, y debido a que el frente fluvial del río Napo es más corto al considerarse únicamente la zona urbana de El Coca, se establecieron en el borde del río Napo 5 transectos de producción urbana hidrosocial.

En el **Mapa 5.1.**, se muestra la ubicación y denominación de cada muestra territorial, en cada una de ellas se muestra la mancha urbana y también la trama generada por la lotización, además de elementos socionaturales como el bosque nativo y el agua. Además de los recortes territoriales era necesario mostrar la mancha urbana general de el Coca, esto para no dejar de lado la jerarquía de la red vial en relación a la morfología de la ciudad a pesar de que en esta investigación se busca construir y comprender los procesos de producción urbana desde el agua y sus geografías.

Además, es necesario recalcar que la selección de bordes se basó en la búsqueda de los parámetros teóricos antes mencionados, es decir, reflejar los los fragmentos de producción que influyen en la conformación de geografías justas o injustas.

MAPA DE UBICACIÓN DE LOS PATRONES DE BORDE DOMINANTES EN LOS EJES FLUVIALES DE C4 SIMBOLOGÍA Construccón Área Verde Ríos N5

Mapa 5.1. Ubicación de los patrones de borde de El Coca

Fuente: Elaborado por la autora con información del trabajo de campo

Existe la hipótesis de que morfológicamente las ciudades adquieren y adoptan formas relacionadas con los elementos que las rodean. En el caso de los ríos, la morfología urbana se caracteriza por formas más dispersas, irregulares y curvas. Mientras que las vías, avenidas y autopistas dan forma a una ciudad más octogonal, regular, y compacta. En El Coca el territorio se han identificado y configurado siete tipologías de bordes urbanos según los

patrones dominantes que producen (Mapa 5.2.): I) tipología de borde urbano conquistado; II) tipología de borde urbano en disputa; III) tipología de borde urbano injusto; IV) tipología de borde urbano poroso en proceso de consolidación; V) tipología de borde periurbano; VI) tipología de borde urbano abierto consolidado; y VII) tipología de borde urbano cerrado.

PATRONES URBANOS DE BORDE EN "EL COCA" **EJE RÍO PAVAMINO** 100 12.0 A. TIPOLOGÍA 4. Borde TIPOLOGÍA 4. Borde TIPNI NGÍA 6. Borde TIPOLOGÍA 5. Borde TIPOLOGÍA 5. Borde TIPOLOGÍA 2. Borde Urbano Poroso en Urbano Poroso en Urbano Abierto Periurbano Urbano en Disputa Consalidación Consalidación Consolidado EJE RÍO COCA TIPNI NGÍA 4 Borde TIPOLOGÍA 5. Borde TIPOLOGÍA 2. Borde TIPOLOGÍA 7. Borde TIPOLOGÍA 5. Borde TIPOLOGÍA 3. Borde Urbano Poroso en Urbano en Disputa Urbano Injusto 的自然思想 EJE RÍO NAPO 2000年12日本 名每 **全国基本已经是** TIPOLOGÍA 4. Borde TIPOLOGÍA 7. Borde TIPNI NGÍA 3 Borde TIPOLOGÍA 5. Borde TIPOLOGÍA 1. Borde Urbano Injusto Urbano Poroso en

Mapa 5.2. Patrones urbanaos de borde de El Coca

Fuente: Elaborado por la autora con información del trabajo de campo

Urbano Cerrado

Periurbano

La primera tipología: borde urbano conquistado, describe geografías del agua en las que existe una concordancia entre la espacialidad percibida y la concebida, lo cual da lugar a una espacialidad real que responde tanto a las modalidades de apropiación del frente fluvial como también refleja una imagen y escenario hidrosocial urbano que representa a la ciudad y a sus paisajes hídricos. En este, caso el espacio vivido se ha conquistado gracias a la actuación estatal por medio de inversión pública, más el trabajo de quienes habitan las riberas generando un espacio público del agua que rescata las prácticas culturales y construye un borde de contacto abierto a múltiples interacciones y apropiaciones territoriales.

Urbano Conquistado

A pesar de esto, esta tipología se evidencia solo en el transecto central de la ciudad en la ribera consolidada del río Napo. Al observar el conjunto del borde generado en el río Napo, se visualiza un paisaje desigual, pues se concentra la intervención pública en este punto y su zona de influencia, dejando a lo demás abandonado o con casi nula intervención y adecuamiento. Partiendo desde el eje central del malecón, la disminución de la intervención genera degradación del espacio y comienzan procesos de segregación y marginalidad urbana a una distancia relativamente corta.

La segunda tipología, denominada como borde urbano en disputa describe territorialidades donde no está clara cual es la espacialidad concebida para el espacio debido a la falta de acción estatal e intervención pública. En esta tipología, la apropiación es generalmente autogestionada por quienes habitan las riberas y buscan mecanismos para habitar de forma más o menos segura las mismas. La interacción en estos espacios entre personas-agua es porosa, es decir que cuando el riesgo no está presente las personas acceden al agua y al río. Sus prácticas se vinculan al río pero de una forma más bien condicionada a la situación y cambios en el río.

Esta segunda tipología se encuentra representada en un transecto del río Coca y uno del río Payamino, siendo el del río Coca correspondiente a los barrios Unión y Progreso y Perla Amazónica, y en el río Payamino corresponde al barrio Turismo Ecológico por un lado y a una parte del barrio Nuevo Coca por el otro. En estos espacios la disputa y resistencia se expresa de formas distintas, en el río Coca principalmente se demuestra en la conformación de espacio público autogestionado y un tratamiento de la ribera para evitar la erosión. Mientras tanto en el caso del río Payamino, el espacio se encuentra disputado por la ocupación informal y la protección de la ribera.

La tercera tipología, denominada borde urbano injusto, es uno donde el acceso al agua se ve limitado, es decir, se ha construido barreras de acceso que no responden a la protección de la ribera sino más bien al control hídrico privado. En estos bordes la interacción y las formas de apropiación espacial se ven limitadas y por ende no se genera un vínculo fuerte con el río y sus dinámicas. La contraparte de un borde urbano injusto, es el borde justo, mismo que se caracteriza por el hecho de que su justicia social no se encuentre bajo el yugo de grupos hegemónicos o relaciones de poder asimétricas.

Esta tipología la encontramos en transectos del río Napo y el río Coca. En el caso del río Napo, este borde injusto se localiza en la zona de a partir del hotel de la misión hacia la zona de la bocana, donde el acceso del agua se privatizó. En la zona del río Coca se encuentran principalmente la presencia de compañías petroleras cuyo acceso al agua es directo y crea una

barrera y un parche territorial en la morfología de la ciudad. Cabe mencionar que aunque no se definió un patrón injusto en el río Payamino esto no indica que no existan zonas en el mismo donde la presencia de empresas petroleras en la ribera haya minado el acceso al agua.

La cuarta tipología se denomina como borde urbano poroso en consolidación, de forma general en esta tipología se observa una yuxtaposición de diversas formas de apropiación e interacción en torno al agua y el río. La condición de ser zona en proceso de consolidación hacen que sus dinámicas se difuminen y se vean influenciadas tomando formas periurbanas. En esta tipología se encuentran en todos los ríos. En el río Napo el proceso de consolidación del barrio 30 de Abril es más rápido y explosivo que en otros barrios que entran en esta tipología debido a la influencia de la zona turística de la ciudad. En el río Payamino, se encuentran en esta tipología riberas correspondientes a los barrios Luis Guerra y Turismo Ecológico, los cuales también presentan altos procesos de consolidación. En el río Coca, una parte del barrio Perla Amazónica entra en esta categoría.

La quinta tipología corresponde a bordes periurbanos, estos espacios son una mixtura entre lo urbano y lo rural, es decir, son áreas de transición entre los entornos urbano y rural, donde el área urbana edificada se encuentra de forma cercana o inmediata con el paisaje rural circundante. En los bordes periurbanos existe una combinación de usos de la tierra urbanos y rurales e igualmente un uso urbano y rural del agua y el río, a menudo, albergan una amplia gama de actividades socioeconómicas y culturales que varían desde, el riego de zonas agrícolas hasta la creación de parque ribereños autogestionados. Esta tipología es exclusiva del borde urbano del río Payamino, Es en las nuevas zonas de expansión tanto de barrios como Guadalupe Larriva, como Nuevo Coca donde se pueden observar formas de producción periurbana. En estas zonas lo urbano y lo rural se conjugan en rurbanidades que marcan la relación con el río.

La sexta tipología denominada como borde urbano abierto consolidado, corresponde a zonas densas en las cuales se ha logrado casi en su totalidad un acceso al agua equitativo, es decir, que los espacios del agua se encuentran abiertos para la interacción y apropiación del espacio. Esta tipología está presente principalmente en el río Payamino en la zona correspondiente a una parte del barrio 30 de Abril, donde se generó un muelle público legalizado para el uso de personas naturales. Este espacio se encuentra totalmente abierto al acceso al agua aunque existe una disputa que responde a la lucha de las personas ante la inseguridad de la zona de acceso a la Playita de la bocana y la organización para realizar mejoras que permitan una mejor apropiación del espacio.

La séptima tipología es denominada como borde urbano cerrado, es decir, en la construcción de mecanismos, infraestructuras u otras modalidades que funcionan como una barrera en relación a la accesibilidad al agua. En el caso de esta tipología esta se encuentra principalmente en el río Coca, aunque también se ha considerado a la bocana Napo-Payamino debido a que a dos lógicas dispares el acceso a la ribera está mediado por actores hegemónicos. En el caso del río Coca estos actores son las empresas petroleras, mientras que en el caso de la bocana Napo-Payamino, los actores que limitan el acceso a la misma son las organizaciones criminales que toman la zona como lugar de venta y consumo de drogas.

Estas tipologías son resultado de su tiempo, y por de los componentes principales que las configuran. Además cabe recalcar que el hecho de que una tipología esté presente eso no exime de que en el mismo territorio se den procesos secundarios paralelos a los explicados. Estas tipologías son un primer intento de identificación de procesos hidrosociales en los bordes urbanos que se basan en el estudio de patrones dominantes pero que no excluyen otras dinámicas y lógicas circundantes, como la a continuación observadas en el análisis del ciclo hidrosocial urbano de la ciudad.

5.2 Ciclo hidrosocial urbano

La construcción del ciclo hidrosocial urbano comienza con el análisis de los flujos del agua, al comprender como el agua fluye en la ciudad y como está continúa su flujo natural, se puede observar actores que intervienen en el flujo generando externalidades o procesos de control desigual. Por ello, esta sección analiza cómo se da el flujo del agua en la ciudad y cual es el actor principal que influye en el manejo y control del agua conformando morfologías del agua y morfologías urbanas de escasez en medio de la abundancia.

5.2.1 Flujos del agua

En el ciclo hidrosocial urbano se observan paralelamente a los flujos del agua, los flujos de poder existentes. El control y manejo del agua influyen en los caminos que toma el agua. El ciclo hidrosocial urbano del Coca comienza con la captación de agua en el río Payamino (Figura 5.2.). La principal fuente que aporta al ciclo hidrosocial urbano de El Coca es de tipo superficial la cual se da gracias a la captación de agua de los ríos Coca y Payamino. Actualmente la captación del río Coca se encuentra suspendida debido a la contaminación y erosión del río. Por ello, el río Payamino es la fuente principal de agua para la ciudad, llegando a 25 barrios de la zona consolidada y a un aproximado de 9302 personas. Esta

captación se combina con la captación de aguas subterráneas, que sirven a los siguientes barrios: Flor de pantano, 30 de Abril, Turismo Ecológico, Nuevo Coca y Unión Imbabureña.

DIAGRAMA DEL CICLO HIDROSOCIAL DE "EL COCA" CONTAMINACIÓN DE LA CUENCA HIDROGRÁFICA NAPO CONTAMINACIÓN POR DERRAMES Y ACTIVIDAD PETROLERA CONTAMINACIÓN POR VERTIDO DE AGUAS RESIDUALES DOMÉSTICOS E INDUSTRIALES CONTAMINACIÓN POR AGROINDUSTRIA Dayuma 3 772 Ha contam 101 14 % A Z T APORTE CONSUMO 40.50% RED PÚBLICA DE AGUA POTABLE Planta de Tratamiento de AGUAS SUPERFICIALES PUNTOS DE ALMACENAMIENTO PUNTOS DE DISTRIBUCIÓN Planta de Tratamiento de Aguas Servidas Ecológica AGUAS SUPERFICIALES POTABL 4 **70%** 0 0 PANTANOS N GUA ⋖ AGUAS SUBTERRÁNEAS ш RÍO NAPO S Ø 30% UÍCOLA O O ŝ 3 Plantas de Agua Potable Alternas 4 I RÍO COCA Y NAPO AGUA EMBOTELLADA PAYAMINO OTRAS FUENTES DEMARCACIÓN HIDROGRÁFICA NAPO USO INDUSTRIAL Y DOMÉSTICO RIEGO USO PISCÍCOLA OTROS USOS USO HIDROELÉCTRICO 0.69% 0.083% 87.49

Figura 5.2. Ciclo hidrosocial urbano de El Coca: flujos de agua y flujos de poder

Fuente: Elaborado por la autora con base a información otorgada por el GAD Municipal Francisco de Orellana (2019), e información de los PDyOT 2014-2019 y 2019-2023.

El tratamiento de las aguas y potabilización se da en las plantas de tratamiento "Los Álamos", ubicada en la ribera occidental del río Coca y la planta de tratamiento "Nuevo Coca", ubicada en la ribera occidental del río Payamino, en la zona de expansión urbana de la ciudad. Estas plantas en conjunto producen el 70% del agua potable del Coca. El otro 30% se produce en tres plantas de tratamiento de agua potable alternas ubicadas en los barrios Flor de Oriente, Flor de Pantano y Unión Imbabureña. El agua potable producida en el Coca beneficia al 74% de la población. El 27% que no cuenta con el servicio de agua potable se encuentra principalmente en las zonas de expansión de la ciudad, en barrios como Nuevo Coca, Guadalupe Larriva y Flor de Oriente.

Estos datos nos indican que el proceso de recolección, tratamiento del agua potable y posterior distribución son una parte importante del ciclo hidrosocial. El alcance del servicio de agua potable generalmente se da paralelo con la legalización de la ocupación. En el caso de zonas con altos niveles de informalidad e invasión, como las riberas, se enfrentan también a una "escasez" de agua debido a que el servicio no llega y a que las fuentes directas del río se contaminan. En estos casos el agua embotellada y la distribución por medio de tanqueros es la solución general.

Como los flujos del agua comienzan y terminan en los ríos. En la siguiente parte se va a detallar como es el proceso después de la distribución del agua potable. El funcionario de la dirección de Agua Potable y Alcantarillado del GAD municipal de Orellana nos explica en una entrevista detalladamente cómo se da esta sección del ciclo hidrosocial urbano en el Coca correspondiente al alcantarillado de la ciudad:

Este es el plano de todo lo que es la península de El Coca y el barrio Nuevo Coca y sus sectores (Flor de pantano, flor de Oriente y otras parroquias). En El Coca lo que está delimitado por el río y por la avenida interoceánica que le llaman Jerusalén, tiene alcantarillado sanitario, el resto de barrios a excepción de Flor de pantano no tienen todavía alcantarillado sanitario. En el Coca existen para uso de los habitantes 10 estaciones de bombeo más 4 estaciones en el recinto militar (...) ubicado en la vía al Auca en la ribera derecha del río Napo (Funcionario Público 2022).

El inicio siempre es una vivienda, una casa o terreno, en la que existe una caja de aguas residuales. El sistema con el que está construido es con redes terciarias. Es decir que cada terreno tiene su caja y cada caja está conectada con la siguiente; y solo la caja que se encuentra en la esquina es común para una cuadra y la otra cuadra. Solo las cajas de la esquina se conectan al pozo (...). Este sistema terciario es mucho más amigable en cuanto a operación y mantenimiento (Funcionario Público 2022).

Esto va desde la parte más alejada hasta la estación de bombeo. El sistema de alcantarillado sanitario como el que se tiene en El Coca, funciona a gravedad, eso quiere decir que la parte más alta envía agua a través de este sistema terciario, luego de pozo a pozo con el sistema secundario y llegaremos a unas tuberías que son primarias y colectan toda el agua (...) después hay que volver a subir el nivel. Para esto, usamos bombas, estas bombas lo que impulsan es el agua que llega al pozo, impulsan el agua para que lleguen a la estación de bombeo. Nuevamente se sube al agua para que desde ese pozo que ya está alto (+1.20 m), se de comienzo a su descenso por medio de la gravedad hasta otra estación de bombeo. La estación combina lo de la zona anterior, además de lo que se produce en la nueva zona (de manera

acumulativa). Así que la parte más baja de acá, hablándole de la estación (...) 6, 7 y 8 tienen la particularidad de bombearse directamente a través de unas tuberías metálicas, atraviesan el puente y llegan a la estación central 9. La estación 9 es la que recoge toda el agua de todo el Coca y la lleva a la planta de tratamiento (Funcionario Público 2022).

El sistema de alcantarillado de la ciudad juega una parte relevante del ciclo hidrosocial de El Coca. Es el sistema de alcantarillado el que mitiga la contaminación generada por el desagüe de aguas servidas en los ríos. Este sistema de alcantarillado funciona aprovechando la topografía de El Coca, es decir se diseña aprovechando las zonas altas para recolectar las aguas. Cabe recalcar que este sistema se ha implementado en la zona nueva de la ciudad, es decir que la ciudad consolidada aún cuenta con un sistema de alcantarillado cuyo desagüe era directo a los ríos. Como estrategia para evitar una contaminación alta por el desagüe de aguas servidas, se realizó una intervención en el sistema antiguo de alcantarillado por medio de separadores como medida para reducir la contaminación y degradación de los ríos.

Antiguamente, se descargaba directo al río. Pero actualmente se realiza una recolección por medio de un tubo de toda la red para evitar que desemboque en el río. El sistema de alcantarillado antiguo corresponde a la parte consolidada de El Coca que llega hasta el antiguo municipio (calle Uquillas) hasta el puente y tiene una edad de aproximadamente unos 35 años; y funcionaba de forma que un solo tubo servía para mandar el agua de la lluvia y el agua residual directamente al río. Toda está infraestructura está enterrada, está adoquinada o asfaltada, es decir, que ya está consolidada. Entonces lo que se hizo los tubos que funcionaban para las dos cosas, se intersectaron por medio de los separadores, pero solo llevando el agua residual. Cuando hay agua lluvia, se desborda los separadores y llega al río (...). Cuando solamente hay agua residuales se lleva con este tubo que se colocó, el tubo recolecta y lleva a la planta de tratamiento. Pero cuando llueve, como por el mismo tubo pasa el agua lluvia, ya llega a un punto alto que se sobrepasa, entonces desborda y va al río. Pero el agua que llega al río es digamos 1% sanitario y 99% agua lluvia. Entonces la disolución que se le hace a través del golpe de agua, y toda la parte de regeneración del agua, ya es mínima a diferencia de lo que había antes (Funcionario Público 2022).

Todo el sistema funciona aprovechando la gravedad y la presión del agua. Cabe recalcar que si existe liberación de gases contaminantes (metano), pero los mismos son menores a los que por ejemplo se liberan en un pozo séptico donde no hay degradación de la materia. En la última parte (cloración) se le inyecta cloro a goteo ya para liberar el agua, esta es la que se considera como la salida que es cuando desemboca en el río Samona, afluente del río Napo (Funcionario Público 2022).

Finalmente, el sistema de alcantarillado cierra el ciclo hidrosocial urbano de la ciudad llegando al río nuevamente. Debido a los datos concernientes a la contaminación de los ríos debido al desagüe de aguas servidas, el funcionario mencionó sobre las implicaciones de rediseñar y reconstruir el sistema de alcantarillado en la zona consolidada de la ciudad:

Es por el gran peso en el presupuesto de la institución. Imagínese para hacer toda esta parte de acá (señalando la parte nueva) costó 50 millones de dólares. Y aparte hay personas que todavía no cuentan con servicio de alcantarillado que es más bien una prioridad. Exactamente, barrios como Nuevo Coca y Guadalupe Larriva necesitan el servicio y están en expansión (Funcionario Público 2022).

Sistema de Bombeo de Aguas Residuales de El Coca

BM1+B2+B3+
B4+B5+B8
B8
B8
BB9
B9
B9

Figura 5.3. Sistema de alcantarillado de El Coca

Fuente: Elaborado por la autora con base a entrevista con funcionario del GAD Municipal de Orellana, 2022.

Es relevante mencionar que este ciclo hidrosocial urbano es todavía sólo a escala de ciudad. En la **Figura 5.3.**, se puede observar cómo funciona el flujo de recolección de las aguas servidas en El Coca y como este empieza a proyectarse hacia zonas colindantes.

Principalmente, en la ciudad funciona el sistema de bombeo desde B1 hasta B9 que recolecta todas las aguas servidas de la ciudad y en esta última estación se suman las estaciones de bombeo del recinto militar. La zona donde se emplaza la planta de tratamiento de aguas residuales es colindante con las zonas de expansión de la ciudad que crece en dirección a la parroquia El Dorado. Esta parroquia además es importante en el ciclo hidrosocial general ya que se convirtió en lugar de acogida. Las reubicaciones de viviendas de los damnificados por las inundaciones, contaminación y erosión del río Coca, fueron reubicados en El Dorado, en una zona en la cual además del proceso de desterritorialización, las personas se enfrentan al agua de formas similares a las que lo obligaron a salir de la ribera del Coca. Las reubicaciones se emplazan en una zona pantanosa que se inunda continuamente.

5.2.2 Flujos de poder

A breves rasgos, se puede evidenciar como el ciclo hidrosocial urbano de El Coca comienza a trascender las fronteras urbanas de la ciudad. A esto se suman los flujos de poder que se gestan en la cuenca del río Napo. El actor principal de estos flujos de poder es el Estado con los proyectos hidroeléctricos, mismos que son los mayores usuarios de los recursos hídricos (Programa de las Naciones Unidas para el Medio Ambiente and Escuela Politécnica Nacional 2018). La hidroeléctrica Coco Codo Sinclair-CELEC, fue construida como la infraestructura de mayor capacidad de producción eléctrica del país (1500,00 MW), es decir que se convertiría en el principal oferente de energía.

Ya desde 1980 el proyecto hidroeléctrico en el río Coca fue concebido, y a partir de la fecha se han realizado múltiples estudios que demostraron la factibilidad del mismo (Programa de las Naciones Unidas para el Medio Ambiente and Escuela Politécnica Nacional 2018;

Jiménez and Panchana 2021) a pesar de que así mismo se encuentren estudios geológicos y vulcanológicos concluyendo lo contrario. La cuenca del río Coca ha sufrido múltiples presiones debido mayoritariamente a su potencial hidroeléctrico. En 2020 sobrepasó el punto de inflexión con el proceso de erosión regresiva que se desencadenó posterior al secamiento de la cascada de San Rafael. Este proceso de erosión regresiva ha tenido diversas consecuencias a nivel de las morfologías urbanas e hídricas tanto de los pueblos ribereños como también de zonas que se encontraban en el área de influencia del cauce del río.

En el Coca, se realizaron estudios para analizar de forma continúa la calidad del agua de los ríos, estos datos (Ver **Tabla 5.1. y Figura 5.4.**) sirven para evidenciar el deterioro de los ríos. En 2016 los tres ríos (Napo, Coca y Payamino) tenían su nivel de calidad del agua en

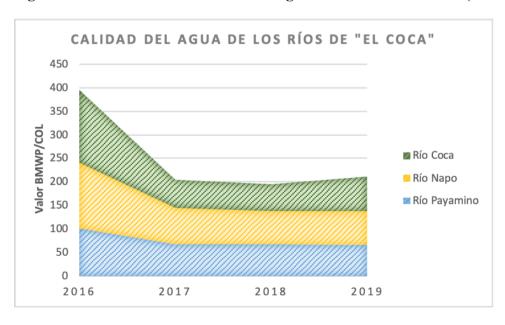

condición de buena (nivel máximo) con valores desde 101 a 155, siendo el río Coca el que tenía la mejor calidad de agua de los tres ríos. La hidroeléctrica Coco Codo Sinclair terminó su construcción en 2016 y comenzó su funcionamiento en noviembre de 2016. Para el siguiente año, el río Coca presenta la mayor caída en la calidad del agua (-95 puntos entre 2016 y 2017) y se continúa deteriorando siendo dudosa hasta que el 2019 logra mejorar hasta tener una calidad aceptable, a pesar de ello, ya se evidencia las repercusiones de la contaminación petrolera y las infraestructuras hídricas, que son las que se presentan como las dominantes en aspectos de control hídrico y flujos de poder en la ciudad.

Tabla 5.1. Calidad del agua en los ríos de El Coca

		Calidad del agua de	los ríos de "El Coc	a"					
Codifica	ación	Valor BMWP/COL	Calidad						
Buena		101 o mayor	Aguas limpias a m	nuy limpias					
Aceptable		61-100	Evidencia de efect	Evidencia de efectos de contaminación					
Dudosa	35-60		Aguas moderadamente contaminadas						
Crítica		16-35	Aguas muy contaminadas						
Muy Crítica		Menor a 15	Aguas severament	te contaminadas					
Subcuencas	2016	2017	2018	2019	Variación				
Río Payamino	101	68	67	66	2016-2019 -35				
•					+				
Río Napo	140	77	71	72	-68				
Río Coca	155	60	57	73	-82				

Fuente: Información recuperada del PdyOT 2019-2023 realizado por el Gobierno Autónomo Descentralizado Municipal Francisco de Orellana (2023).

Figura 5.4. Variación de la calidad del agua en los ríos de El Coca (2016-2019)

Fuente: Elaborado por la autora con base a datos del Gobierno Autónomo Descentralizado Municipal Francisco de Orellana (2023).

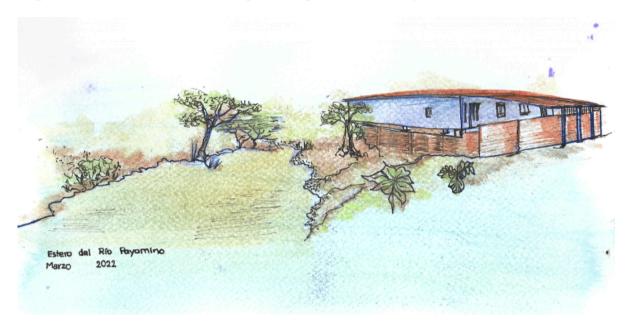
Adicionalmente, un flujo de poder se gesta desde la jerarquía urbana de las ciudades ecuatorianas. El Distrito Metropolitano de Quito (DMQ), metrópolis capital con jerarquía urbana de tipo 1, ejerce presiones en el ciclo hidrosocial de las ciudades amazónicas como el Coca ya que para abastecer al DMQ de agua potable se toma agua desde la cuenca amazónica del río Coca. El agua es trasvasada, modificando no solamente un flujo hídrico que debería fluir hacia el océano Atlántico y que en su lugar desemboca en el océano Pacífico, sino que además existe un alto porcentaje de poblaciones urbanas y rurales amazónicas que no cuentan aún con el servicio de agua potable.

Esta presión en el río Coca es importante porque siguiendo los pasos del DMQ, otras poblaciones podrían acceder al agua a pesar de que la misma no forme parte de sus límites administrativos. Además dado que los límites administrativos son elementos rígidos, también se pueden producir procesos de control hídrico aguas arriba (páramos andinos) interceptando el flujo de agua amazónico, y cortando o limitando el acceso al agua de quienes viven aguas abajo (principalmente comunidades ribereñas dispersas). Estos procesos de control hídrico y flujos del agua abordados son la punta del iceberg del ciclo hidrosocial en la cuenca del río Napo ya que además, existen agentes de control hídrico detrás de las actividades agropecuarias, como el cultivo de la palma africana, o de la actividad piscícola. Por ello, cabe recalcar que el ciclo hidrosocial se extiende fuera de los límites establecidos por las divisiones político/administrativas, en el caso de los flujos del agua de El Coca, estos cumplen su proceso en el ciclo hidrosocial a nivel de ciudad pero este proceso a su vez es parte de un ciclo hidrosocial regional y nacional.

Tabla 5.2. Distancia a lugares ribereños desde El Coca

Distancias apr	Distancias aproximadas desde El Coca a los lugares ribereños del río Napo									
Amarun Mesa	3 kms	San Roque	130 kms							
San Carlos	7 kms	Pañacocha	150 kms							
Huamayacu	20 kms	Edén	155 kms							
Descanso	25 kms	Yuturi-Samona	175 kms							
Paroto-Primavera	30 kms	Chiru Isla	195 kms							
San Francisco	35 kms	Sinchi Chicta	210 kms							
Pompeya	50 kms	San Vicente	230 kms							
Limoncocha	56 kms	Puerto Quinche	250 kms							
Itaya	60 kms	Tiputini	265 kms							
Pilche	85 kms	Santa Rosa	275 kms							
Añangu	95 kms	Santa Teresita	295 kms							
Sani Isla	110 kms	Nuevo Rocafuerte	300 kms							
DMQ (Quito)	312 kms									

Fuente: González (1985) Río Napo: realidad amazónica ecuatoriana. Ediciones CICAME, Vicariato Apostólico de Aguarico. Página 32


Para finalizar la importancia del estudio de los ciclos hidrosociales multiescalares, se analiza la **Tabla 5.2.**, en la cual se puede observar las distancias aproximadas a los poblados ribereños en la cuenca del río Napo, desde el Coca hasta Nuevo Rocafuerte, se contabilizan 24 poblados esto excluyendo a pequeñas comunidades que se encuentran ya sea un poco más adentro de la ribera pero dentro del área de influencia del río y que también acceden al agua directamente del río. Por ello y debido a que el agua que consumen la mayoría de las comunidades rurales del cantón Puerto Francisco de Orellana proviene directamente del río Napo, es importante estudiar procesos como la presencia de infraestructuras hídricas como la Hidroeléctrica Coco-Codo Sinclair que tiene repercusiones graves en toda la cuenca cuando debido a su alta intervención el la morfología del río cambian las dinámicas de la cuenca, además de procesos como captación temprana (aguas arriba) del agua por parte del DMQ, cuyos impactos aún se encuentran en proceso de estudio pero ya evidencia una construcción desigual a nivel regional en el modelo de urbanización planetaria y urbanización amazónica.

5.3 Desigualdad y resistencia en los espacios hidrosociales de El Coca

En este capítulo el objetivo fue de describir las dinámicas sociales encontradas en los componentes determinantes de la red hidrosocial que tienen influencia en la morfología de ciudad y caracterizar en tipologías urbanas la producción urbana asociada a los ríos: Payamino, Coca y Napo a escala micro en la ciudad de El Coca (Puerto Francisco de Orellana). Este objetivo se concretó al abordar cómo se construyen en un mismo borde urbano tipologías "opuestas" a nivel de apropiación, interacción y consolodición urbana. Así mismo se evidencio como estas tipologías se vinculan a las desigualdades observadas en el ciclo hidrosocial del agua. Además abriendo paso hacia procesos macro regionales que influyen e intensifican las limitaciones de los mismos grupos vulnerables de la ciudad.

El territorio hidrosocial del río Napo si bien tiene una jerarquía marcada en relación al desarrollo urbano focalizado en la ciudad de El Coca, sin embargo, también se logra visualizar como ya a esta escala existen procesos y flujos de agua y poder que van más allá e influencian a toda la red de la cuenca del Napo. Principalmente, la actividad antrópica basada en procesos de control del agua es la que genera a nivel meso y macro los cambios más grandes en el paisaje amazónico, logrando con ello generar una introducción a la última escala de estudio de esta investigación: la escala macro-regional de la cuenca del río Napo.

Capítulo 6. Lo territorial: ríos que configuran ciudades y la vida

Para concluir los capítulos empíricos, se zomplementa con un análisis a escala macro de la cuenca hidrosocial. En este capítulo se estudia a través de la aplicación de transectos, ejes y territorializaciones, la influencia de la morfología hídrica en la morfología urbana. La constitución de un territorio dinámico, un paisaje interescalar y territorialidades colectivas en torno a los ríos.

6.1 Desde el parche hasta el mosaico hídrico

El territorio y sus paisajes reflejan distintos procesos según su escala. A escala meso, los procesos hidrosociales presentan patrones específicos de territorialización y urbanización. Los ríos como se ha mencionado, por su naturaleza dinánica y su función como ejes articuladores morfológicamente mutan desde la escala local hasta la escala global. En este capítulo se estudian la parte cuantitativa de la investigación por medio de una análisis de métricas del paisaje, para recortes territoriales de 1 kilómetro como de 10 kilómetros siendo esta última la mayor escala de estudio planteado en la investigación y que cubre el territorio hidrosocial aproximado de la cuenca del río Napo (Ver **Figura 6.1.**).

En esta escala, aunque considerada macro en la investigación como en capítulos anteriores, se mantiene un enlace de conexión entre escalas, a manera de interfase. La escala de 1 kilómetro (RT2) funciona como el puente para el análisis final de la constitución de las morfologías urbanas e hídricas y su mutua influencia, por lo tanto, la escala de 10 kilómetros (RT1) representa la escala macro a nivel de la cuenca hidrosocial del río Napo y en base al modelo urbanización planetaria en la región amazónica.

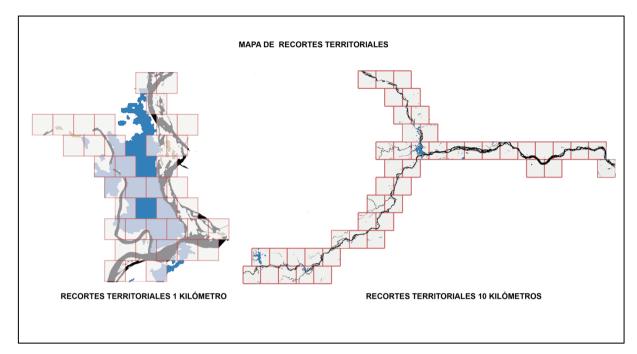


Figura 6.1. Ubicación de los recortes territoriales

Fuente: Elaborado por la autora con información del trabajo de campo

El primer análisis es el de las diferencias territoriales según las métricas del paisaje. En la escala de 1 km, se presentan diferencias significativas entre los años 2020 y 2022 principalmente en el suelo boscoso, en las áreas inundables, el suelo para cultivos y el uso de pastos y arbustos, es decir en que la El Coca no presenta variaciones significativas en relación a la construcción y los cuerpos de agua en estos años (ver **Tabla 6.1.**).

Tabla 6.1. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para cada uso de suelo (RT2)

	Diferencias entre años 2020 - 2022											
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_M N	FR_MD	ENN	AI
Bosque	0,034**	0,032**	0,035**	0,068*	0,060*	0,525	0,252	0,038**	0,087*	0,064*	0,053	0,735
Vegetación Inundable	0,067*	0,224	0,227	0,014*	0,512	0,002**	0,021**	<0,001**	0,036**	<0,001**	0,270	<0,001**
Cuerpo de Agua	0,578	0,489	0,426	0,418	0,266	0,247	0,683	0,345	0,643	0,289	0,812	0,058*
Cultivos	0,654	<0,001**	<0,001**	0,845	0,004**	0,061*	0,032**	0,384	0,553	0,255	0,102	0,186
Pastos y Arbustos	0,003**	0,944	0,944	0,021*	0,611	0,033**	0,077*	0,075*	0,428	0,148	0,256	0,105
Suelo Descubierto	0,421	0,151	0,153	0,155	0,196	0,020**	0,005**	0,005***	0,017**	0,006***	0,402	0,054*
Construcción	0,296	0,278	0,273	0,276	0,622	0,268	0,653	0,783	0,766	0,526	0,822	0,416

Niveles de confianza: *90%, **95%, ***99%

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

En cambio al segregar el análisis (ver **Tabla 6.2.**), se encuentra para el año 2020 diferencias tanto en el uso de construcción como en los cuerpos de agua. Los cambios significativos con un nivel de confianza del 99% para los cuerpos de agua sucedieron en las métricas de porcentaje del paisaje (PLAND) y densidad del paisaje (PD), para el índice del parche más largo (LPI) el nivel de confianza fue de 90% con un valor de 0.052 y para el índice de forma de los cuerpos de agua (SH_MD) la confianza fue de 95% con un valor de 0.047. Estos valores nos indican que sí existieron cambios en la morfología de los cuerpos de agua entre los tres ejes fluviales (Coca, Napo y Payamino). Así mismo, en este año se presentaron cambios significativos en el suelo construido, principalmente en porcentaje de parche con un 95% de confianza y un valor de 0.036; en índice del parche más largo la confianza es del 90% con un valor de 0.052; para las métricas de índice de forma e índice de dimensión fractal (FR_MN) se demuestran diferencias significativas entre los ejes fluviales, lo cual a su vez indica que existen diferencias entre las morfologías urbanas o de producción social de hábitat entre los ríos Coca. Napo y Payamino.

Tabla 6.2. Prueba Kruskall Wallis de diferencias de métricas de paisaje entre ejes fluviales para cada año (RT2)

					2020							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	ENN	AI
Bosque	0,656	0,093*	0,092*	0,794	0,157	0,997	0,832	0,658	0,076*	0,373	0,014**	0,977
Vegetación Inundable	0,043**	0,443	0,443	0,008***	0,341	0,032**	0,304	0,278	0,055*	0,179	0,953	0,045**
Cuerpo de Agua	<0,001***	0,002***	0,002***	<0,001***	0,052*	0,759	0,327	0,047**	0,380	0,503	0,101	0,797
Cultivos	0,423	0,154	0,154	0,249	0,038**	0,190	0,385	0,231	0,356	0,195	0,750	0,040**
Pastos y Arbustos	0,555	0,635	0,623	0,814	0,894	0,363	0,729	0,922	0,945	0,565	0,237	0,415
Suelo Descubierto	0,336	0,400	0,412	0,053*	0,452	0,010***	0,103	0,088*	0,175	0,139	0,075*	0,009**
Construcción	0,036**	0,642	0,630	0,052*	0,916	0,149	0,033**	0,036**	0,041**	0,089*	0,128	0,134
					2022							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	ENN	AI
Bosque	0,083*	0,595	0,595	0,023**	0,453	0,036**	0,515	0,280	0,355	0,159	0,349	0,031**
Vegetación Inundable	0,066*	0,614	0,614	0,008***	0,574	0,012**	0,795	0,410	0,851	0,234	0,048**	0,030**
Cuerpo de Agua	<0,001***	0,005***	0,005***	<0,001***	0,008***	0,165	0,480	0,081*	0,439	0,250	0,021**	0,510
Cultivos	0,969	0,274	0,287	0,935	0,121	0,912	0,509	0,151	0,264	0,059*	0,579	0,666
Pastos y Arbustos	0,093*	0,558	0,558	0,063*	0,494	0,175	0,917	0,740	0,535	0,457	0,424	0,142
Suelo Descubierto	0,041**	0,261	0,261	0,062*	0,224	0,156	0,106	0,766	0,269	0,655	0,156	0,503
Construcción	0,017**	0,752	0,699	0,024**	0,064*	0,033**	0,195	0,252	0,464	0,269	0,507	0,033**

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

Para el año 2022, las diferencias entre ejes fluviales se mantienen para los cuerpos de agua y el suelo construido. Por lo tanto, se puede concluir que las diferencias observadas entre los ejes fluviales tanto a nivel de producción urbana como de morfodinámica del río no responden a un hecho temporal aislado sino más bien a lógicas que se profundizan en espacio y tiempo.

Tabla 6.3. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 según su uso de suelo y eje fluvial (RT2)

				Difere	ncias en	tre año	s 2020	- 2022					
Eje	LULC	PLAND	NP	PD	LPI	LSI	A_M N	SH_M N	SH_M D	FR_M N	FR_M D	ENN	AI
	Bosque	0,228	0,280	0,280	0,277	0,775	0,384	0,437	0,555	0,103	0,192	0,913	0,384
	Vegetación Inundable	0,086*	0,354	0,354	0,075*	0,839	0,048*	0,154	0,044*	0,016*	0,001**	0,044*	0,046*
ca	Cuerpo de Agua	0,321	0,488	0,489	0,157	0,181	0,245	0,716	0,355	0,337	0,135	0,806	0,034*
Río Coca	Cultivos	0,386	0,276	0,276	0,644	0,806	1,000	0,600	0,709	0,678	0,964	0,389	0,819
Rí	Pastos y Arbustos	<0,001**	0,169	0,169	0,007**	0,321	0,033*	0,412	0,298	0,549	0,202	0,270	0,086*
	Suelo Descubierto	0,279	0,806	0,806	0,412	0,469	0,279	0,174	0,199	0,292	0,190	0,151	0,968
	Construcción	0,680	0,163	0,130	0,509	0,248	0,364	0,413	0,606	0,457	0,920	0,884	0,993
	Bosque	0,406	0,004**	0,004**	0,897	0,010**	0,097*	0,225	0,042*	0,705	0,226	0,022*	0,082*
	Vegetación Inundable	0,288	0,806	0,806	0,130	0,908	0,060*	0,165	0,741	0,882	0,,576	0,630	0,045*
apo	Cuerpo de Agua	0,981	0,593	0,594	0,951	0,756	0,692	0,862	0,836	0,716	0,721	0,522	0,637
2. Río Napo	Cultivos	0,929	0031**	0,031**	0,722	0,017**	0,155	0,801	0,444	0,328	0,159	0,328	155,00 0
2	Pastos y Arbustos	0,940	0,325	0,307	0,705	0,903	1,000	0,257	0,161	0,554	0,096*	0,940	0,705
	Suelo Descubierto	0,710	0,500	0,500	0,288	0,481	0,327	0,533	0,411	0,530	0,831	0,023*	0,207
	Construcción	0,380	0,721	0,839	0,380	0,845	0,329	0,485	0,372	0,309	0,558	0,897	0,422
	Bosque	0,150	0,699	0,699	0,152	0,665	0,272	0,548	0,250	0,206	0,289	0,337	0,395
0	Vegetación Inundable	0,550	0,205	0,206	0,341	0,452	0,044*	0,039*	0,078*	0,054*	0,094*	0,295	0,022*
ımi	Cuerpo de Agua	0,479	0,586	0,372	0,436	0,837	0,422	0,628	0,475	0,756	0,546	0,428	0,410
Río Payamino	Cultivos	0,965	0,022**	0,023**	0,600	0,033**	0,206	0,021*	0,024*	0,054*	0,013**	0,662	0,710
	Pastos y Arbustos	0,147	0,644	0,645	0,259	0,610	0,174	0,286	0,529	0,821	0,807	0,800	0,328
3.	Suelo Descubierto	0,765	0,034**	0,036**	0,311	0,038**	0,029*	0,018*	0,011*	0,018*	0,010**	0,572	0,061*
	Construcción	0,624	0,757	0,757	0,586	0,786	0,771	0,957	0,568	0,724	0,741	0,481	0,786

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

Profundizando más el análisis de diferencias se concluye para analizar el cambio de métricas de paisaje entre años según cada eje fluvial (ver **Tabla 6.3.**). Entre los años 2020 y 2022, para el río Coca, las diferencias observadas se dan principalmente en el suelo inundable y los usos de suelo de pastos y arbustos. En cambio, para el río Napo, las diferencias se dan entre los usos de suelo boscoso y el suelo destinado a cultivos, además de una diferencia en la dimensión fractal del uso de suelo de pastos y arbustos. Así mismo, para el río Payamino, los

cambios están orientados a la vegetación inundable, el suelo para cultivos, y el suelo descubierto. Estos análisis verifican lo antes mencionado que existen cambios entre los ejes en cuanto a morfologías hídricas y urbanas pero estos cambios no se representan necesariamente en el recorte temporal de 2020 a 2022.

A continuación se analizan las diferencias en el recorte territorial de 10 kilómetros, que abarca toda la cuenca hidrosocial del río Napo e incluye a ciudades como el Tena, el Coca hasta los poblados de Edén y Yuturi. En la **Tabla 6.4.,** se muestra como existen diferencias entre los años 2020 y 2022 en todos los usos de suelo (bosque, natural, cuerpo de agua, agrícola y urbano). Los cambios significativos en los cuerpos de agua y el suelo urbano se dan principalmente en métricas de área y perímetro (PLAND, LPI, Área) y de agregación (NP, PD, AI), los cambios en las métricas de forma se da más bien en uso de suelo natural mayoritariamente y en un nivel inferior en el uso agrícola y urbano.

Tabla 6.4. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para cada uso de suelo (RT1)

	Diferencias de métricas del paisaje entre los años 2020 y 2022 para cada uso de suelo												
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
Bosque	0,095*	0,016	0,017 **	0,932	<0,001*	0,026**	0,722	0,041**	0,598	0,286	<0,001*	<0,001*	0,006**
Natural	0,963	0,824	0,821	0,532	0,200	0,617	<0,001*	<0,001*	<0,001*	<0,001*	<0,001*	0,894	0,069*
Cuerpo de Agua	0,130	0,093	0,098	0,057*	0,271	0,028**	0,725	0,498	0,885	0,85	0,761	0,062*	0,048**
Agricola	<0,001*	0,015	0,015 **	0,007**	<0,001*	0,031**	0,003**	0,962	0,339	0,416	0,896	0,025**	0,299
Urbano	<0,001*	0,413	0,416	<0,001*	0,162	<0,001*	0,053*	0,102	0,079*	0,817	0,018**	0,574	<0,001*
Niveles de	confianza: *90	%, **959	/o. ***99%	/ ₀									

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

En la **Tabla 6.5.**, se segrega nuevamente para analizar el orígen de las diferencias antes mencionadas. En este caso, el río Coca y el río Payamino son considerados como afluentes del río Napo, de esta manera existen dos ejes fluviales: afluentes del río Napo y el río en sí. Para el año 2020, los cambios continúan siendo significativos para los cuerpos de agua, sin embargos para el año 2022 estos cambios pierden significancia y en el caso de índice de forma del los cuerpos de agua esta significancia desaparece para 2022. Esto nos indica que aunque existen diferencias entre los afluentes y el río Napo, esta diferencias responden a un evento temporal. En el año 2020 comenzó la pandemia de Covid-19 y para 2022 las medidas comenzaron a disminuir, por ello, es posible que las diferencias observadas respondan al tiempo de encierro y la pausa de la vida urbana que se dio en las ciudades.

Para el suelo urbano, ocurre totalmente lo contrario, en el año 2020, solo existían diferencias en cuanto a la dimensión fractal y la agregación (compacidad) del mismo, pero para el año 2022, se evidencia un aumento en la significancia de métricas como densidad del parche, índice de forma del paisaje urbano, e índice de forma, perdiendo la significancia antes mencionada en fractalidad y agregación. Esto permite reforzar la idea, de que las diferencias observadas responden al contexto vivido de la pandemia, pues para 2022, en la cuenca del Napo se empieza nuevamente a observar una densificación urbana. Cabe recalcar que para conclusiones precisas se debe tomar en cuenta la fecha exacta de las ortofotos anuales, esto permitirá corroborar o refutar lo mencionado.

Tabla 6.5. Prueba Kruskall Wallis de diferencias de métricas de paisaje entre ejes fluviales para cada año (RT1)

						2020							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
Bosque	0,069*	0,432	0,432	0,004***	0,908	0,388	0,021**	0,547	0,003***	0,043**	0,696	0,017**	0,796
Natural	0,511	0,680	0,690	0,447	0,906	0,598	0,002***	0,005***	0,010***	0,004***	0,139	0,748	0,820
Cuerpo de Agua	0,002***	0,132	0,125	<0,001***	0,013**	<0,001***	0,403	0,319	0,505	0,620	0,545	0,447	<0,001***
Agricola	0,562	0,198	0,185	0,193	0,007***	0,146	0,102	0,44**	0,049**	0,082*	0,981	0,908	0,055*
Urbano	0,212	0,927	0,922	0,146	0,400	0,069*	0,185	0,691	0,266	0,560	0,005***	0,411	0,014**
						2022							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
Bosque	0,073*	0,013**	0,013**	0,770	0,014**	0,017**	0,132	0,193	0,713	0,597	0,008***	0,231	0,013**
Natural	0,007***	0,185	0,185	0,007***	0,097*	0,082*	0,001***	0,030**	0,155	0,065*	0,709	0,652	0,289
Cuerpo de Agua	0,055*	0,180	0,176	0,058*	0,186	0,003***	0,119	0,633	0,867	0,909	0,221	0,544	0,043**
Agricola	0,006***	0,401	0,401	0,003***	0,236	0,005***	0,059*	0,525	0,789	0,648	0,919	0,296	0,027**
Urbano	0,202	0,042**	0,042**	0,417	0,013**	0,887	0,060*	0,714	0,422	0,326	0,191	0,160	0,375

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

Para concluir este primer paso de establecer la existencia de diferencias en las métricas de paisaje, se realiza el análisis de diferencias entre los años 2000 y 2022 para los dos ejes fluviales (**Tabla 6.6.**). En los transectos correspondientes a los afluentes del río Napo (mayoritariamente la cuenca del río Coca), se observan diferencias entre los años, relacionadas con todos los usos de suelo a excepción del suelo de bosque primario. Los cambios más significativos ocurren en el suelo natural, ya que se observan diferencias en casi todas las métricas de paisaje. Al observar, los valores obtenidos para el río Napo, se

evidencian cambios en todos los usos de suelo a excepción de los cuerpos de agua. Este último resultado nos muestra como el cauce del río Napo se vio poco alterado durante este recorte temporal.

De esta manera, se puede observar como la existencia de diferencias responde a la escala y refleja procesos y dinámicas de su misma envergadura. Para la escala de 1 kilómetro las diferencias se centraban en ser más una cuestión de variación entre ejes fluviales, mientras que para la escala de 10 kilómetros las diferencias responden también a eventos dentro del recorte temporal.

Tabla 6.6. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 según su uso de suelo y eje fluvial (RT1)

I	Diferencias de métricas del paisaje entre los años 2020 y 2022 para cada uso de suelo y según su eje fluvial													
Eje	LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
odı	Bosque	0,178	0,375	0,375	0,020**	0,710	0,205	0,687	0,561	0,272	0,120	0,281	<0,001*	0,737
Río Napo	Natural	0,005**	0,178	0,178	0,002**	0,976	0,490	<0,001*	0,003**	0,002**	<0,001*	<0,001*	0,510	0,017**
del	Cuerpo de Agua	0,011**	0,292	0,308	0,005**	0,224	0,013**	0,870	0,195	0,833	0,895	0,302	0,870	0,001**
Afluentes	Agricola	0,777	0,022*	0,22**	0,200	0,011**	0,045**	0,045**	0,507	0,108	0,947	0,974	0,412	0,008**
1. A	Urbano	0,006**	0,394	0,392	0,002**	0,499	<0,001*	0,127	0,241	0,238	0,792	0,002	0,844	<0,001*
	Bosque	0,013**	0,002*	0,002*	0,283	<0,001*	0,003**	0,199	0,043**	0,291	0,561	<0,001*	0,002**	<0,001*
odi	Natural	0,171	0,685	0,685	0,499	0,134	0,442	<0,001*	<0,001*	<0,001*	0,003**	0,006**	0,694	0,285
Río Napo	Cuerpo de Agua	0,47	0,293	0,296	0,31	0,38	0,104	0,618	0,715	0,938	0,974	0,738	0,040**	0,218
2. F	Agricola	<0,001*	0,088*	0,089*	<0,001*	0,005**	<0,001*	0,001**	0,71	0,942	0,289	0,949	0,031**	0,015**
	Urbano	0,019**	0,124	0,125	0,002**	0,038**	<0,001*	0,154	0,225	0,167	0,732	0,103	0,401	<0,001*

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

6.2 Patrones hidrosociales

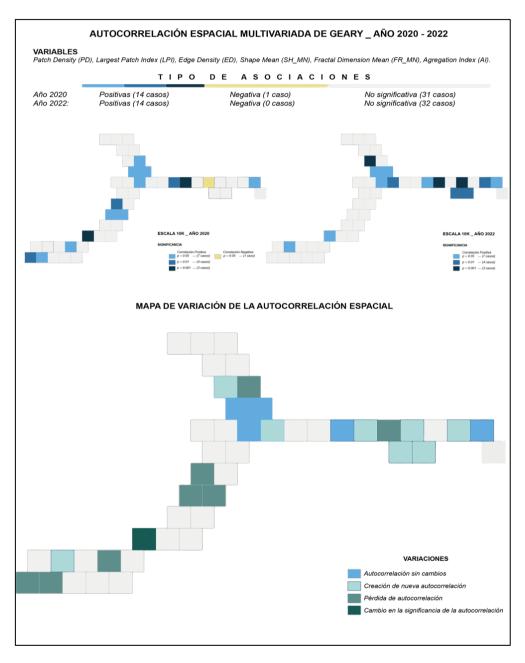
Los patrones hidrosociales se conforman al analizar la composición y la configuración del paisaje. Por lo tanto esta siguiente sección analiza la autocorrelación de las variables hídricas (métricas del paisaje para los cuerpos de agua o el uso hídrico) y de las variables urbanas (métricas del paisaje para el uso de suelo urbano). Primeramente, este estudio de correlación es individual entre cada variable internamente, y después entre ellas. Al existir correlación se verifica que las morfologías urbanas e hídricas se transforman simbióticamente. Al finalizar se muestran los modelos de regresión para demostrar la influencia de los ríos en la formación de la ciudad de El Coca y otras poblaciones urbanas de la cuenca.

6.2.1 Composición y configuración de los paisajes del agua amazónicos

Al analizar la composición y configuración del paisaje se realiza a través de un análisis de correlaciones. Para ello, es necesario mencionar los tipos de asociaciones espaciales posibles. En la **Tabla 6.7.**, se muestran los valores a considerar. Los valores de cero se consideran como una asociación nula, valores mayores a cero hasta 0.6 son asociaciones positiva desde muy débiles hasta moderadas, valores mayores a 0.60 hasta menores a 1 se consideran asociaciones positivas fuertes y muy fuertes, 1 se considera una asociación positiva perfecta; para los valores negativos se determina así: valores mayores a -0.6 hasta cero como asociaciones negativas desde muy débiles hasta moderadas y valores mayores a -1 hasta -0.6 se consideran asociaciones negativas fuertes y muy fuertes, así mismo, -1 indica una asociación negativa perfecta. Las asociaciones positivas generalmente reflejan una relación proporcional entre las variables, es decir si una aumenta la otra también y viceversa cuando disminuyen. En cambio, las asociaciones negativas indican una relación inversamente proporcional, lo cual indica que si una variable aumenta otras disminuyen o viceversa.

Tabla 6.7. Descripción de los tipos de correlaciones espaciales

Rango	Cod.	Descripción
1	APP	Asociación Positiva Perfecta
0,8 to 1	APMF	Asociación Positiva Muy Fuerte
0,6 to 0,8	APF	Asociación Positiva Fuerte
0,4 to 0,6	APM	Asociación Positiva Moderada
0,2 to 0,4	APD	Asociación Positiva Débil
0 to +0,2	APMD	Asociación Positiva Muy Débil
0	NULL	Asociación Nula
0 to -0,2	ANMD	Asociación Negativa Muy Débil
-0,2 to -0,4	AND	Asociación Negativa Débil
-0,4 to -0,6	ANM	Asociación Negativa Moderada
-0.6 to -0,8	ANF	Asociación Negativa Fuerte
-0,8 to -1	ANMF	Asociación Negativa Muy Fuerte
-1	ANP	Asociación Negativa Perfecta


Fuente: Elaborado por la autora con información del trabajo de campo

En el análisis de autocorrelación espacial multivariada de Geary para el año 2000 y 2022 (ver **Figura 6.2.**), se definen las siguientes asociaciones: para el año 2020, 14 asociaciones positivas y 1 asociación negativa; y para el año 2022, continúan formándose 14 asociaciones positivas y no existe ningún caso de asociación negativa.

Las variables consideradas en éste análisis fueron las siguientes: densidad del parche, índice del parche más largo, densidad del perímetro, índice de forma, dimensión fractal e índice de agregación. Para el año 2020, en la zona de influencia de El Coca (ciudad) conforman un cluster en el que las variables se relacionan consigo mismas espacialmente. En cambio, para

2022, este cluster pierde un parche correspondiente a la zona al norte de San Sebastián del Coca. A pesar de ello, el cluster formado en torno al centro urbano de El Coca, se mantiene con una asociación significativa al 0.05, es decir con un 95% de confianza.

Figura 6.2. Autocorrelación espacial multivariada de Geary para RT1 en los años 2020 y 2022

Fuente: Elaborado por la autora con información del trabajo de campo

Así mismo, espacialmente se puede observar como para el año 2022, se forman asociaciones significativas positivas en la cuenca baja del río Napo, conformando pequeños clusters en las zonas de: Limoncocha y Añangu. Mientras tanto en la cuenca alta del río Napo, las asociaciones positivas son principalmente significativas para el año 2020 y en las zonas de:

Puerto El Sol, las comunidades de Bajo Huino y El Inca, Sunimón Chontapunta y Santa Rosa de Otas. Esto evidencia los primeros patrones morfológicos de composición y configuración de paisajes en los poblados y ciudades de la cuenca del río Napo a escala macro.

6.3 Procesos hidrosociales: la función del paisaje hidrosocial

El análisis de autocorrelación permite formar unos patrones exploratorios, y permite construir una base de análisis para la correlación de las variables urbanas e hídricas. Los procesos hidrosociales responden a la función que cumple el paisaje: en este caso se busca verificar la función del agua como moldeadora de lo urbano y lo urbano como agente modificador del río.

Tabla 6.8. Asociación de la forma hídrica y la forma urbana para el año 2020

Resumen de valores significativos de la correlación de las métricas del paisaje entre el suelo hídrico y el									
		suelo urbano (2							
Métrica 1	Métrica 2	Correlación de Pearson	Sig. (bilateral)	N	Asociación				
	U_LPI_FI	0,0382**	0,01	45	Positiva débil				
R_PLAND_LOG	U_PAFR	-0,344*	0,019	46	Negativa débil				
	U AI	0,332*	0,024	46	Positiva débil				
R NP RC	U PAFR	0,418**	0,004	46	Positiva moderada				
R PD RC	U PAFR	0,418**	0,004	46	Positiva moderada				
D I DI I OC	U LPI FI	0,298*	0,047	45	Positiva débil				
R_LPI_LOG	U LSI	-0,306*	0,039	46	Negativa débil				
	U PAFR	-0,427**	0,003	46	Negativa moderada				
	U AI	0,328*	0,026	46	Positiva débil				
R LSI	U PAFR	0,610**	<,001	46	Positiva fuerte				
	UAI	-0,376*	0,01	46	Negativa débil				
	U LSI	-0,345*	0,019	46	Negativa débil				
R_AMN_LOG	U_AMN_RC	0,360*	0,014	46	Positiva débil				
	U_PAFR	-0,576**	<,001	46	Negativa moderada				
	U ENN MN	0,346*	0,018	46	Positiva débil				
	U AI	0,438**	0,002	46	Positiva moderada				
	U PLAND FI	-0,432**	0,004	43	Negativa moderada				
R PAFR	U LPI FI	-0,365*	0,016	43	Negativa débil				
_	U AI	-0,313*	0,039	44	Negativa débil				
	U LPI FI	0,346*	0,02	45	Positiva débil				
R AI	U PAFR	-0,550**	<,001	46	Negativa moderada				
_	U AI	0,405**	0,005	46	Positiva moderada				

Nota: Formato del código de la métrica del paisaje: X_YYY_ZZZ

Fuente: Elaborado por la autora con información del trabajo de campo

Al realizar una correlación entre la métricas del paisaje del uso hídrico y del suelo urbano (ver **Tabla 6.8.**), se destacan las siguientes asociaciones: para el año 2020 las mayores asociaciones hídrico/urbanas son en las métricas de área y perímetro y de agregación. Las asociaciones más fuertes son las del tipo moderado y se dan entre la variable de densidad del

X = R cuando se refiere a métricas empleadas en el parche hídrico o de río; y U cuando se refiere a métricas empleadas en el parche urbano o construido.

YŶY= Métrica del paisaje empleada.

ZZZ= LOG, cuando el valor fue normalizado por medio de operaciones logarítmicas; FI, cuando el valor fue normalizado por medio de

^{*}Significancia de los valores: *95% y **99%

parche hídrico con la dimensión fractal del perímetro-área del suelo urbano con un valor de 0.418 al 95% de confianza; la relación entre las variables del índice del parche hídrico más largo y la dimensión fractal del perímetro-área del suelo urbano es de -0.427 al 95 % de confianza. Estos dos valores demuestran que a mayor compacidad del parche urbano, los cuerpos de agua se fragmentan complejizando su forma hacia formas irregulares y dispersas. Así mismo, existe una asociación positiva fuerte entre el índice de forma del paisaje hídrico y la dimensión fractal del perímetro-área, indicando una verificación de la relación antes mencionada.

Tabla 6.9. Asociación de la forma hídrica y la forma urbana para el año 2022

Resumen de valo	res significativos d	le la correlación de las		aje entr	e el suelo hídrico y el
		suelo urbano (2			
Métrica 1	Métrica 2	Correlación de Pearson	Sig. (bilateral)	N	Asociación
R PLAND LOG	U ENN MN	0,383*	0,01	44	Positiva débil
	U_SH_MN	0,356*	0,016	45	Positiva débil
R_NP_RC	U_FR_MN	0,358*	0,016	45	Positiva débil
	U_PAFR	0,353*	0,017	45	Positiva débil
	U_SH_MN	0,360*	0,015	45	Positiva débil
R_PD_RC	U_FR_MN	0,358*	0,016	45	Positiva débil
	U_PAFR	0,350*	0,019	45	Positiva débil
	U_PLAND_FI	-0,409**	0,006	44	Negativa moderada
	U_NP	-0,352*	0,018	45	Negativa débil
R_LPI_LOG	U_PD	-0,352*	0,018	45	Negativa débil
	U_LPI_FI	-0,335*	0,026	44	Negativa débil
	U_FRMD_FI	0,319*	0,035	44	Positiva débil
	U_PAFR	-0,351*	0,018	45	Negativa débil
	U_ENN_MN	0,479**	0,001	44	Positiva moderada
	U_NP	0,308*	0,039	45	Positiva débil
	U_PD	0,308*	0,039	45	Positiva débil
R LSI	U_LPI_FI	0,358*	0,017	44	Positiva débil
K_LSI	U_LSI	0,309*	0,039	45	Positiva débil
	U_FR_MN	0,349*	0,019	45	Positiva débil
	U_PAFR	0,498**	<,001	45	Positiva moderada
	U_ENN_MN	-0,318*	0,036	44	Negativa débil
	U_PLAND_FI	-0,347*	0,021	44	Negativa débil
	U_NP	-0,391**	0,008	45	Negativa débil
R_AMN_LOG	U_PD	-0,391**	0,008	45	Negativa débil
	U_LPI_FI	-0,327*	0,03	44	Negativa débil
	U_LSI	-0,396**	0,007	45	Negativa débil
	U_PAFR	-0,492**	<,001	45	Negativa moderada
	U_ENN_MN	0,510**	<,001	45	Positiva moderada
R SHMN FI	U_SH_MN	-0,362*	0,015	45	Negativa débil
K_SIIIVII_II	U_FRMD_FI	-0,358*	0,017	44	Negativa débil
	U_SH_MN	-0,466**	0,001	45	Negativa moderada
R_SHMD_FI	U_FR_MN	-0,479**	<,001	45	Negativa moderada
	U_FRMD_FI	-0,470**	0,001	44	Negativa moderada
R_FR_MN	U_PLAND_FI	0,320*	0,034	44	Positiva débil
R FR MD	U_FRMD_FI	-0,398**	0,007	45	Negativa débil
	U_PAFR	0,300*	0,043	46	Positiva débil
R_PAFR	U_PLAND_FI	-0,337*	0,031	41	Negativa débil
R_AI	U_PLAND_FI	-0,394**	0,007	45	Negativa débil
K_M	U_NP	-0,393**	0,007	46	Negativa débil

U_PD	-0,393**	0,007	46	Negativa débil
U LPI FI	-0,399**	0,007	45	Negativa débil
U_LSI	-0,372*	0,011	46	Negativa débil
U PAFR	-0,529**	<,001	46	Negativa moderada
U ENN MN	0,462**	0,001	45	Positiva moderada

Nota: Formato del código de la métrica del paisaje: X YYY ZZZ

Fuente: Elaborado por la autora con información del trabajo de campo.

Al observar la **Tabla 6.9.**, se encuentran las asociaciones para el año 2022 las cuales de manera general aumentan en comparación con el año 2020. En el caso del año 2022, las asociaciones más fuertes son las correspondientes a: la relación negativa moderada entre el índice del parche hídrico más largo y el porcentaje de paisaje urbano, la relación positiva moderada entre el índice del parche hídrico más largo y la distancia euclidiana al vecino más cercano del suelo urbano, la asociación negativa entre el índice de forma del paisaje hídrico y la dimensión fractal del perímetro-área del suelo urbano; y las asociaciones negativas moderadas entre las métricas de forma del uso de suelo urbano y los cuerpos de agua, con significancia al 90% y 95% de confianza lo cuál permiten validar la hipótesis de que generalmente la correlación existente entre el suelo urbano y los cuerpos de agua responde a una función moldeadora basada en la disputa del espacio. Es decir, una batalla entre el agua y el suelo por ganar territorio.

Realizando un análisis contrastivo entre las asociaciones del año 2020 y 2022 (Ver resaltado celeste en la **Tabla 6.8.** y la **Tabla 6.9.**), se destacan los siguientes cambios significativos: I) La asociación existente entre la densidad del parche hídrico y el número de parches hídricos con la métrica de dimensión fractal del área-perímetro del suelo urbano cambio de ser una asociación positiva moderada en 2020 a ser una asociación positiva débil para el año 2022, la disminución de la asociación en ambas métricas hídricas se debe a que tanto el número de parches como la densidad del parche son métricas estrechamente relacionadas. II) La asociación de la métrica de índice del parche más largo (LPI) para la clase hídrica y urbana, en el año 2020 mantiene una asociación positiva débil que cambió a una asociación negativa débil para el año 2022. Este cambio refleja como las variables en el año 2020 mantenían una relación directamente proporcional, es decir, a mayor porcentaje del paisaje del parche hídrico más largo se tenía también un mayor porcentaje del suelo urbano. Pero para el 2022, esta

X = R cuando se refiere a métricas empleadas en el parche hídrico o de río; y U cuando se refiere a métricas empleadas en el parche urbano o construido.

YYY= Métrica del paisaje empleada.

ZZZ= LOG, cuando el valor fue normalizado por medio de operaciones logarítmicas; FI, cuando el valor fue normalizado por medio de

^{*}Significancia de los valores: *95% y **99%

⁻Subrayado azul, muestra cambio en la asociación entre los años 2020 y 2022

relación se vuelve inversamente proporcional indicando así que cuando aumentan los valores del porcentaje del suelo urbano los del suelo hídrico disminuirán. Estos cambios temporales en la relación evidencian rupturas en las asociaciones y el dinamismo en la relación aguaciudad.

6.4 Morfologías urbanas a partir de las morfologías del agua

En la conformación de morfologías urbanas en el territorio hidrosocial, el río juega un papel fundamental. En El Coca, la influencia de los ríos que la conforman se da al transformar y direccionar la forma en que crece la ciudad y se adapta a las formas dinámicas del agua. Los modelos de regresión mostrados a continuación evidencian la alta influencia que tienen los ríos en la producción urbana y también en la conformación de periferias.

Tabla 6.10. Modelos de regresión lineal a escala territorial 1 (RT1-10 kilómetros)

		Regresión Linea	al para la Variable	U_PAFR		
Modelo	Métrica		2020	2022		
		Coeficiente	Significancia	Coeficiente	Significancia	
001	R PLAND ¹	-0,307	0,009***	-303	0,055*	
	R ENN MN ¹	0,591	0,001***	-0,063	0,682	
002	$R^{-}FR^{-}MN^{2}$	0,075	0,537	0,144	0,283	
	$R^{-}LSI^{2}$	0,602	0,000***	0,506	<0,001***	
003	R FR MD	0,122	0,38	0,352	0,013**	
	$R^{-}PD^{\overline{1}}$	0,421	0,004***	0,404	0,005***	
004	R SH MN ¹	0,264	0,045**	0,228	0,089*	
	$R^{-}A^{-}MN^{1}$	-0,544	<0,001***	-0,521	<0,001***	
005	RAI	0,061	<0,001***	-0,58	<0,001***	
	R SH MD^1	-0,516	0,652	-0,166	0,225	
		Regresión Line	eal para la Variable	e U LSI		
Modelo	Métrica	2020		2022		
		Coeficiente	Significancia	Coeficiente	Significancia	
001	R PLAND ¹	-0,199	0,193	-0,302	0,055*	
	R ENN MN ¹	0,106	0,484	-0,119	0,440	
002	$R^{-}FR^{-}MN^{2}$	-0,074	0,625	0,101	0,508	
	$R^{-}LS\overline{I}^{2}$	0,205	0,178	0,286	0,064*	
003	R FR MD	0,022	0,883	0,191	0,2	
	$R^{-}PD^{\overline{1}}$	0,188	0,216	0,314	0,038**	
004	R SH MN ¹	-0,08	0,596	0,011	0,939	
	$R^{-}A^{-}MN^{1}$	-0,253	0,098*	-0,413	0,008***	
00.5	R_AI	-0,171	0,281	-0,459	0,003***	
005		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				

0.827

-0.264

0.074*

Niveles de confianza: *90%, **95%, ***99%

R SH MD1

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en

0.034

Fragstats y SPSS

En la **Tabla 6.10.** se muestran los primeros modelos de regresión sin ajustar que analizan la influencia de distintas conjuntos de variables de la forma hídrica en la dimensión fractal del perímetro-área del suelo urbano (U PAFR), métrica del paisaje que describe la complejidad del parche urbano independientemente de la escala del parche y en el índice de forma del

¹Variables normalizadas en ambos periodos: 2020-2022

²Variables normalizadas en el periodo 2022

paisaje urbano (U_LSI). Además, para analizar la relación existente entre la morfología de los ríos y la morfología urbana estos cinco modelos de regresión se pusieron a prueba para los dos cortes temporales: 2020 y 2022.

Primeramente, para cada modelo se realizan los análsis correspondientes de colinealidad y homocedasticidad para definir los grupos de variables hídricas que entran al modelo como variables independientes. Las agrupaciones de la variables quedan definidas de la siguiente manera: el primer modelo: porcentaje del paisaje hídrico y distancia al vecino más cercano, lo cual permite observar la dispersión de los cuerpos de agua; el segundo modelo: dimensión fractal del uso hídrico e índice de forma del paisaje hídrico; el tercer modelo: la dimensión fractal y densidad del parche hídrico; el cuarto modelo: el índice de forma y área del suelo hídrico; y el quinto modelo: el índice de agregación e índice de forma, todos estos modelos se diseñaron para verificar sí la forma, densidad y fragmentación de lo cuerpos de agua influyen en el suelo urbano y su fragmentación y en la forma que toman las morfologías urbanas.

El primer conjunto de modelos se relaciona principalmente con la fragmentación, mientras el segundo conjunto se relaciona con la forma de la mancha urbana en todo el territorio hidrosocial. En el primer conjunto de modelos de regresión se evidencia como la significancia de la mayoría de la variables hídricas es altamente significativa con una confianza de 95% y 99% para explicar la fragmentación del suelo urbano en el año 2020. Esta influencia disminuye para el año 2022 pero no desaparece lo cual indica que existe una influencia de las morfologías hídricas en la fragmentación de la producción urbana. Así mismo, se verificó que para el año 2022 la mayoría de las variables hídricas tienen una influencia significativa y con un nivel de confianza entre el 90% y 99% en la forma del suelo urbano aunque esta influencia no estaba tan consolidada en el año 2020.

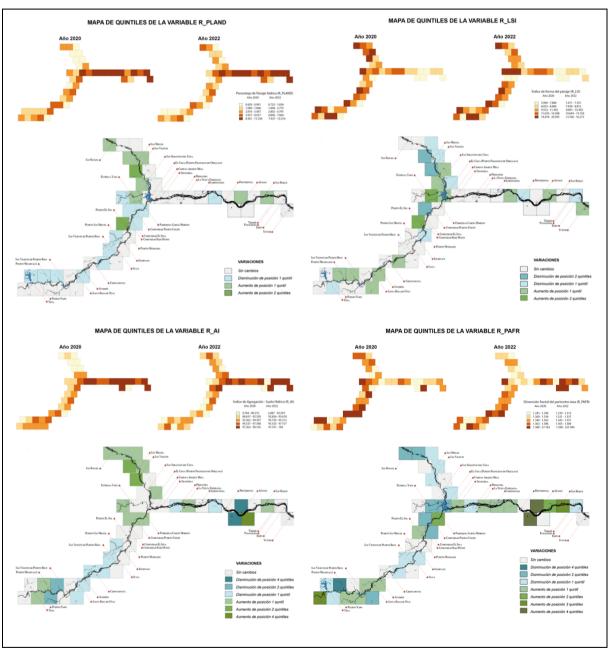
Estos datos nos indican cómo los cuerpos de agua son estructurantes y elementos vertebrantes para la conformación urbana. Además, nos indican que la forma, es decir, la morfologías hídricas y urbanas son dinámicas y se mantienen interrelacionadas entre sí siguiendo una relación simbiótica en la que los cambios y modificaciones del uno modifican al otro.

El siguiente modelo ajustado de regresión lineal (**Tabla 6.11.**) demuestra para el año 2020 con un 99% de confianza como la variable de porcentaje de paisaje hídrico (R_PLAND) y su índice de forma (R_LSI) influyen en la fragmentación del suelo urbano (dimensión fractal área-perimetro del uso de suelo urbano- U_PAFR) la variable de forma del paisaje hídrico tienen una mayor significancia (menor a 0.001) mientras la significancia del porcentaje de

paisaje hídrico es de 0,003. Para el año 2022, la significancia del porcentaje de paisaje hídrico disminuye y en un 95% de confianza se da su influencia sobre el suelo urbano. De forma general, se logra evidenciar que la presencia del suelo hídrico esta pérdiendo su influencia en los procesos urbanos y el suelo antrópico. Es probable que con el modelo actual de expansión caracterizado por la acumulación capitalista difumine aún más esta relación de influencia simbiotica agua-ciudad.

Tabla 6.11. Modelo ajustado de regresión lineal a escala territorial 1 (RT1-10 kilómetros)

			esión Lineal par		CO_IAFK
Modelo	2020		2022		Conclusión
	Coeficientes	Sig.	Coeficientes	Sig.	
R_PLAND^1	-1,085	0,003***	-0,732	0,057*	Pérdida de significancia
R_SHMN^1	-0,08	0,573	0,022	0,925	-
R_LSI^2	1,221	<,001***	0,787	0,008***	Pérdida de significancia
R_AI	1,107	0,016**	0,641	0,12	Pérdida de significancia
R_{ENN}^{1}	0,109	0,445	0,182	0,28	-
R_PAFR	-0,024	0,877	-0,219	0,214	-
	Modelo Ajus	tado de Regi	resión Lineal pa	ıra la variab	ole U_LSI
Modelo	2020		2022		Conclusión
Modelo	Coeficientes	Sig.	Coeficientes	Sig.	Colletusion
R PLAND ¹	-1,08	0,011**	-1,033	0,01***	Aumento de significancia
R_LSI^2	0,901	0,016**	0,58	0,046**	Pérdida de significancia
R_AI	1,153	0,034**	0,732	0,082*	Pérdida de significancia
R_PAFR	-0,352	0,049**	-0,192	0,276	Pérdida de significancia
$R_{\rm SHMD^1}$	-0,044	0,775	-0,312	0,192	-
Niveles de confianz	a: *90%, **95%,	***99%			
¹ Variables normaliz	adas en ambos ne	riodos: 2020	2022		


²Variables normalizadas en el periodo 2022

Fuente: Elaborado por la autora con base en el trabajo investigativo y posterior procesamiento en Fragstats y SPSS

De forma general, el modelo ajustado de regresión lineal es la evidencia de la influencia permanente de los cuerpos de agua sobre el suelo urbano. Para el año 2020, las siguientes variables son significativas en influencia a la variable dependiente de dimensión fractal del perímetro-área del suelo urbano: el porcentaje de paisaje hídrico (0.003), el índice de forma del paisaje hídrico (<0.001) y el índice de agregación hídrico (0.016). Estos valores indican como la dispersión e irregularización de la forma de los cuerpos de agua influyen en la fragmentación del suelo urbano. En relación a la variable dependiente de índice de forma del paisaje urbano, las variables independientes que mantienen una influencia significativa son: el porcentaje de paisaje hídrico (0.011), el índice de forma del paisaje hídrico (0.016), el índice de agregación (0.034), y la dimensión fractal del perímetro-área de los cuerpos de agua (0.049). Esto nos indica que para explicar la forma urbana, tanto aspectos como la

compacidad, la forma y el tamaño de los cuerpos de agua son aspectos significativos y de alta influencia.

Figura 6.3. Estadísticos de quintiles de las variables: R-PLAND, R-LSI, R-AI y R-PAFR para los años 2022 y 2022

Fuente: Elaborado por la autora con información del trabajo de campo

En cambio, para el año 2022 la variable dependiente de dimensión fractal del perímetro-área del suelo urbano se ve influenciada por el porcentaje de paisaje hídrico con un valor de significancia de 0.057 y por el índice de forma del paisaje hídrico con un valor de 0.008. En este año el índice de agregación pierde su significancia implicando con ello que la compacidad de los cuerpos de agua ya no es un factor que influye en la forma urbana. Así

mismo, para la variable dependiente de índice de forma del paisaje urbano, las siguientes variables mantienen una influencia significativa: porcentaje de paisaje hídrico (0.01), el índice de forma del paisaje hídrico (0.046) y el índice de agregación (0.082). De la misma manera, en este modelo la dimensión fractal del perímetro-área de los cuerpos de agua deja de ser significativa para explicar la forma urbana.

Además, estos valores se visualizan espacialmente en la **Figura 6.3.**, en la cual se visualiza como las zonas de mayor compacidad hídrica se localizan en la cuenca baja del río Napo, mientras que las formas que presentan formas más irregulares se localizan en la cuenca del río Coca y en la cuenca alta del río Napo.

El cambio de la significancia en la influencia de las variables hídricas de agregación y de dimensión fractal para explicar los procesos de producción urbana reflejan como la relación río-ciudad se está deteriorando. Es decir que el rol estructurante de los ríos podrían perderse sí la producción urbana se genera de forma expansiva y depredando los cuerpos de agua.

El objetivo correspondiente al presente capítulo fue de analizar geográficamente y por medio de las métricas del paisaje, la meso y macro escala de la composición y configuración de los paisajes urbanos evidenciando con ello, las características relacionadas con la fragmentación, la justicia social y el derecho a la ciudad. Este objetivo se cumplió al demostrar tanto por medio de los análisis de diferencias como también a través de las correlaciones y los modelos de regresiones lineales que demuestran numéricamente que la influencia hídrica en la cuenca del río Napo es existente y es vertebradora de los procesos urbanos aunque este role presente signos de deterioro.

Capítulo 7. Discusión: el río prefiere las curvas a los bordes²⁷

Una docena de núcleos urbanos en el Baixo Amazonas de tamaño medio y pequeño, localizados en las márgenes del Amazonas y de sus principales tributarios, son testimonio de una historia ligada inevitablemente a las aguas, y que, lejos de perder su vínculo orgánico-funcional con los ríos, en las tres últimas décadas han dado origen a un entramado de relaciones que se materializa en una original red urbana estructurada y condicionada por el trazado y ritmo de los cauces amazónicos (Valbuena 2008).

7.1 El agua como moldeadora de la forma urbana

El agua es un camino, una herramienta, un ser vivo. Los ríos son las redes que tejen ciudades y que conectan a la urbanización planetaria. Al aprender sobre el modelo de urbanización actual y debido a la gran complejidad de las relaciones que se entretejen en el territorio, el investigador elige usualmente uno o varios hilos conductores de la lectura urbana. El hilo conductor de esta investigación son los ríos y el agua, incluso cuando en la ciudad se esconde el agua bajo tierra y se la destina a seguir su camino entre alcantarillas y tuberías, a pesar de ello, el agua forma y seguirá siendo una parte vertebrante de las ciudades. Este capítulo de discusión busca regresar con los hallazgos encontrados a las teorías urbanas. A pesar de ello, y a manera de cierre se realiza un último hallazgo general desde todas las escalas y

-

²⁷ O rio (...) prefere as curvas às arestas. Estrófa original del poema corto de Thereza Kolbe en su poemario Livro do Rio. Recuperado de https://suburbano.net/ser-y-fluir-como-rio-amazonico-poesia-de-thereza-kolbe/

temporalidades empleadas. Un último viaje en barco entre los ríos de El Coca y a lo largo de la cuenca del río Napo. Naveguemos.

En las geografías del agua, la vida local se autodefine y se comprende como ribereña, fluvial, del agua, esto debido a la centralidad del agua. La centralidad del agua es la fuerza gravitacional o de atracción que los cuerpos de agua ejercen sobre los asentamientos humanos. Gracias a esta centralidad, múltiples aspectos de la vida cotidiana giran y se organizan en torno al agua, haciendo de esta manera que el vínculo con la misma sea algo arraigado y permanente, que se hace cuerpo (Astelarra 2018).

Relaciones hidrosociales
Formas espaciales, materiales y simbólicas

Ago Coca

Relaciones hidrosociales
Formas espaciales, materiales y simbólicas

Ago Coca

Relaciones hidrosociales
Formas espaciales, materiales y simbólicas

Tabla 7.1. Relaciones hidrosociales de los ríos de El Coca: Agua-transporte

Fuente: Elaborado por la autora a partir de fotografías del trabajo de campo.

La vida local a lo largo de los tres ríos de El Coca se define primeramente desde la movilidad (ver **Tabla 7.1.**), la movilidad de personas, de bienes y de servicios, el vaivén de las canoas se dibuja en los imaginarios, las subjetividades y las relaciones hidrosociales, y forma parte de la imagen del río y de la ciudad, en el río siempre hay canoas o barcos, transitando, esperando u olvidados. El transporte es la actividad primogénita de los ríos y es a través de estas primeras

exploraciones en los ríos que se consigue identificar puntos de encuentro e intercambio, los cuales ven nacer las próximas ciudades.

Existe una relación dialéctica entre la forma urbana y los modos de viaje y su estudio se ha visto principalmente motivado por la problemática en torno a la movilidad urbana. A pesar de ello, la relación entre la forma urbana y la movilidad va más allá de un análisis causal hacia una relación bidireccional, es decir, una relación en la que la morfología urbana afecta las modos de viaje de las personas y a su vez estas modalidades de movilidad practicadas en la vida cotidiana dan forma y cambian la forma urbana (Orellana, Hermida, and Hermida 2022; Miralles-Guasch and i Frontera 2003).

Por lo tanto, es preciso decir que en ciudades portuarias la conformación de una relación estrecha entre el agua y los modos de desplazamiento cotidianos dan forma a la morfología de las ciudades. Adicionalmente, en ciudades amazónicas se suma a esta fuerte modalidad de transporte, el hecho de que las poblaciones habitan el territorio de forma multisituada para sustentar su modo de vida.

Tabla 7.2. Relaciones hidrosociales de los ríos de El Coca: Agua-alimentación

Fuente: Elaborado por la autora a partir de fotografías del trabajo de campo.

La territorialidad multisituada es el intento de inserción a la economía global, las familias deciden mantener la chakras, para proveerse de alimentos y a su vez aprovechar y generar ingresos con la comercialización de los mismos. El río es esencial para llegar a los puntos de intercambios, muelles y mercados. Cada relación hidrosocial se entreteje con otra siguiendo las formas de respuesta a las necesidades de las personas. La relación agua-alimentación se desarrolla de forma paralela al transporte (Ver **Tabla 7.2.**). Esto complejiza la relación hidrosocial en El Coca, lo cual a su vez desdibuja una vez más, lo urbano y lo rural. Así, las formas de vida o de experiencia local amazónicas no pueden definirse como rurales, ni urbanas, pese a los fuertes procesos de urbanización. La ocupación amazónica y las relaciones entre ella y el agua son de carácter multifacético.

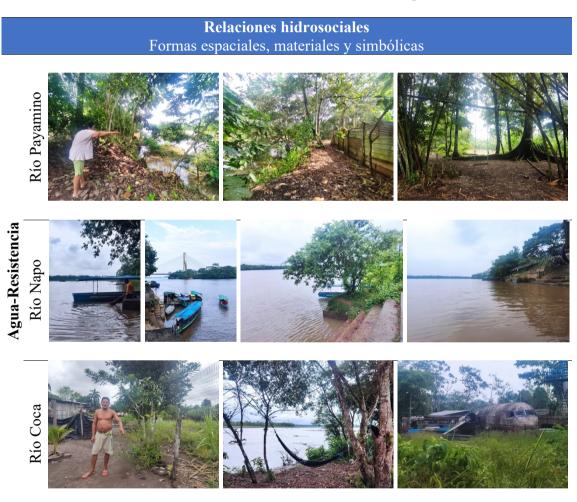
Relaciones hidrosociales
Formas espaciales, materiales y simbólicas

Rio Nabo

Rio Paramino

Rio Par

Tabla 7.3. Relaciones hidrosociales en los ríos de El Coca: Agua-turismo


Fuente: Elaborado por la autora a partir de fotografías del trabajo de campo.

Otra relación que depende del transporte y la movilidad es el turismo. En El Coca la relación agua-turismo (Ver **Tabla 7.3**) tiene gran protagonismo ante el posible fin de las ciudades petroleras. Esta relación se construye en torno a los ríos que siguen siendo claves para el acceso a comunidades o reservas naturales. Pero en la Amazonía en los últimos años se ha

observado un boom del turismo indígena que igualmente es otra estrategia empleada por las comunidades para desarrollar una economía sostenible bajo el modelo económico actual.

Pero el turismo índigena puede llegar a ser un arma de doble filo para las comunidades, muchas familias indígenas pueden lograr un empoderamiento pero también pueden sufrir de lógicas de exotificación de los saberes, las tradiciones y la cultura. Ya que se está mercantilizando con la cultura de las comunidades amazónicas, esta se vuelve un objeto de oferta y demanda promovido indiscriminadamente en los discursos gubernamentales y por las políticas urbanas estatales.

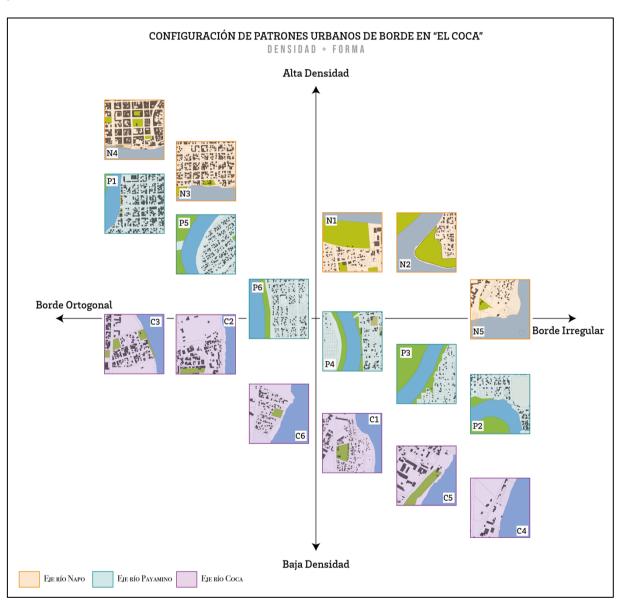
Tabla 7.4. Relaciones hidrosociales en los ríos de El Coca: Agua-resistencia

Fuente: Elaborado por la autora a partir de fotografías del trabajo de campo.

Además, aunque los ríos son indispensables para el turismo en la Amazonía, esto no descarta que existan "cementerios de despojos" en los mismos (Gil de Arriba 2015), que empañan los paisajes del agua y limitan la formación de bordes de contacto, donde la interacción se intensifica y vivifica. Pero ante estos cementerios de despojos y los vacíos urbanos que se crean por el abandono, resurgen las resistencias. Las formas de resistencia espacial y

territorial también se relacionan con el agua (Ver **Tabla 7.4.**) y como una búsqueda de la autonomía.

La resistencia puede llegar a romper la naturalización del modelo capitalista, más que nada a través de la visualización de otras formas de ver, sentir y vivir los territorios (Roca-Servat and Palacio Ocando 2019). La resistencia en las geografías del agua es una expresión y un sentir de las personas por mantener un vínculo con el agua. El adaptar un espacio de sombra, un espacio de juego o un sendero para llegar al río, son las apropiaciones que se gestan desde la resistencia y desde la disputa de los espacios públicos del agua. La autonomía se autogestiona y se construye para ejercer el derecho a la ciudad, al agua y al río. Con el ejercicio libre y justo del derecho a la ciudad, se abre la puerta a la defensa del territorio y el agua no romantizando a la naturaleza sino construyendo una base sólida para la superviviencia del territorio (Roca-Servat and Palacio Ocando 2019).


Tabla 7.5. Relaciones hidrosociales en los ríos de El Coca: Agua-territorio

Fuente: Elaborado por la autora a partir de fotografías del trabajo de campo.

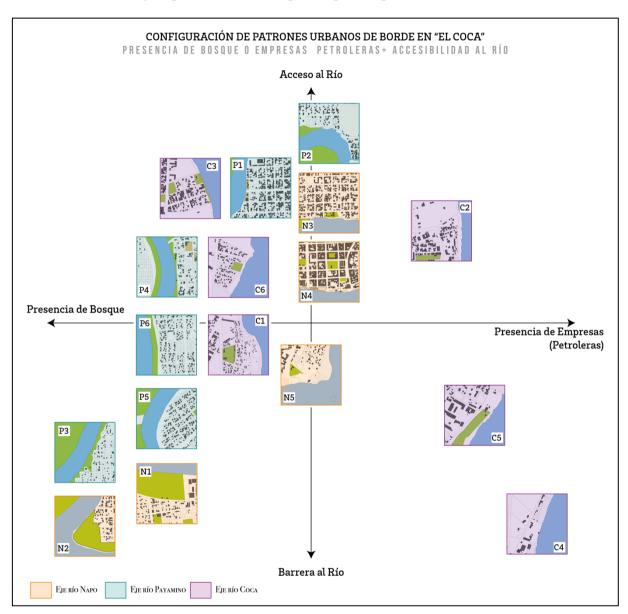
Generar en el territorio y en las cuencas, geografías del agua justas es la finalidad del estudio hidrosocial. Observar la relación agua-territorio (ver **Tabla 7.5.**) y conjugar desde los modos de viaje hasta las apropiaciones resistentes para la conformación de una imagen clara de como el espacio socionatural se construye y puede ser empleado como diagnóstico y herramienta para el diseño de las políticas urbanas y de la intervención estatal y privada. Logrando de esta manera no solo una romantización de lo natural ni un discurso de defensa del territorio y de derechos sino una verdadera lucha por concretar en el territorio la justicia social.

Figura 7.1.Configuración de los patrones urbanos de borde en El Coca según la desidad y la forma

Fuente: Elaborado por la autora con información del trabajo de campo

En el territorio, las relaciones hidrosociales se reflejan en las formas espaciales y en los patrones urbanos ofreciendo una lectura primordialmente espacial del territorio. En los bordes urbanos, las configuraciones hidrosociales permiten una lectura colectiva y lineal de la territorialización del agua. En El Coca, los tres ríos son uno y son autónomos, se rigen bajo una jerarquía interna que marca la producción urbana y las modalidades de apropiación de sus riberas.

En una primera configuración más urbana, los ríos Napo, Coca y Payamino conforman tres ejes casi paralelos (ver **Figura 7.1.**). El río Napo lidera jerárquicamente en aspectos de densidad y de ortogonalidad. Aunque los ríos prefieren los bordes suaves y las curvas, en el río Napo estos bordes se enderezan siguiendo la linealidad de su frente fluvial y de su malecón. Las líneas invisibles que trazan el tejido urbano surgen de los elementos circundantes como los ríos y las vías. Por ello, en El Coca se puede observar una dualidad y una gradiente que oscila entre la ortogonalidad y la dispersión.


De igual manera, en una segunda configuración (ver **Figura 7.2.**) se analiza la presencia de bosque o empresas petroleras en contraposición con el acceso al río y las barreras que se presentan al momento de acceder al agua. En este caso, los bordes urbanos no presentan una configuración unificada, sino más bien, la configuración del borde urbano varía entre transectos. La presencia de empresas petroleras o incluso de viviendas limita el desarrollo de la continuidad de los bordes urbanos generando un entramado entrecortado con pequeños puntos de accesibilidad. En las ciudades fluviales amazónicas esta lógica espacial intermitente, se moldea a partir de las condiciones ecológicas, sociales y económicas únicas de la región.

Los patrones desiguales son una muestra de las morfologías existentes en el territorio. Como la urbanización en la región amazónica ha sido impulsada por una variedad de factores, que incluyen la migración, el desarrollo económico y las políticas gubernamentales. Se crearon importantes desafíos ambientales y sociales. La deforestación, la contaminación y otras formas de degradación ambiental fragmentan los bordes urbanos, al igual que los problemas relacionados con la desigualdad social, incluido el acceso inadecuado a servicios básicos como el agua potable y el alcantarillado.

El problema de abastecimiento de agua y de alcantarillado en un territorio hidricamente abundante, se muestra como una paradoja que responde a las lógicas detrás del capitalismo y la mercantilización de los recursos naturales. En general, esta tendencia depredadora es

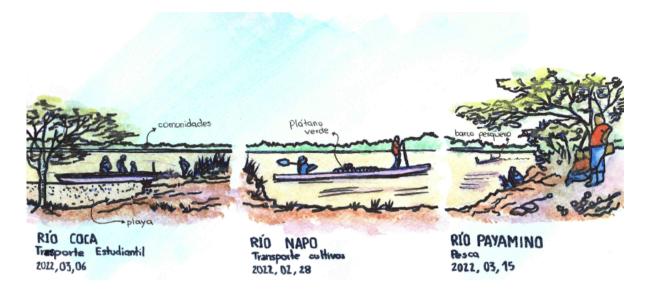
insostenible en el tiempo por ello, es necesario abordar estos desafíos y promover formas de urbanización más sostenibles en las ciudades. La urbanización a escala planetaria no es un proceso reversible, por lo tanto, se debe pensar en los mecanismos que permitan mantener una relación equilibrada entre las morfologías de la ciudad.

Figura 7.2. Configuración de los patrones urbanos de borde en El Coca según la accesibilidad al río y la presencia de bosque/empresas petroleras

Fuente: Elaborado por la autora con información del trabajo de campo

Frente a fuerzas exógenas, el espacio muestra escenarios en los que cada elemento u objeto del paisaje, sea este socionatural, cultural, político, o de mercado, es pensado desde el conjunto y no de forma aislada (Moreyra 2009). Por ello, las morfologías del agua son una parte de la morfología de la ciudad. Así mismo, es por esta razón que no se pueden aislar

ninguno de los componentes del territorio hidrosocial del río Napo, desde la construcción de la hidroeléctrica Coco Codo Sinclair, hasta el proceso más pequeño de adaptación de espacios públicos del agua en el río Payamino y Coca influyen en la forma que toma la ciudad. Cada proceso urbano o hídrico marca, refuerza o reproduce líneas y curvas en el territorio conformando una mancha urbana única pero que comparte características debido a su naturaleza de ciudad fluvial.


La hipótesis central planteada en esta investigación fue que la morfología urbana de la ciudad amazónica y portuaria de El Coca (Puerto Francisco de Orellana) es un resultado de la configuración de los territorios hidrosociales y a su vez esta configura a los mismos estableciendo un relación simbiótica en la que el agua, es el elemento que permite lograr ya sea la justicia social o un incremento de las desigualdades estructurales. Esta hipótesis queda demostrada ampliamente, ya que, en El Coca la relación río-ciudad mantiene roles de estructuración y vertebración urbana a nivel multiescalar, conformando prácticas materiales y culturales relacionadas al agua y la vivienda, el agua y el alimento, el agua y el transporte y el agua y el turismo, enmarcadas bajo los espacios del agua. Además, estas mismas lógicas se reproducen y reconfiguran a escalas mayores generando patrones de borde que oscilan entre distintas formas de producción urbana pero reflejando un borde general en el que se muestran las desigualdades y las injusticias territoriales.

Además, en la hipótesis de estudio se planteó que el rol principal de los ríos de El Coca era uno estructurante que formaba tipologías de paisajes y patrones caracterizados por la diversidad e hibridación y generados por procesos multicausales. Esta sección de la hipótesis de estudio se evidenció, a partir del estudio morfogenético. En este análisis, desde el lente de los hitos económicos se demostró cómo las economías y las lógicas de mercados se configuran a partir del uso y aprovechamiento de los ríos; desde el lente político de las delimitación territoriales y las políticas se demostró cómo se generan procesos que incentivaron la migración y facilitaron la colonización primero de los ríos y después de la selva; y desde el lente de las infraestructuras y los hitos arquitectónicos se demostró como la inversión pública y la construcción de infraestructuras hídricas puede generar ya sea geografías del agua conquistadas, justas y vivas o geografías desiguales e injustas.

Los territorios hidrosociales están conformados por una variedad de factores, que incluyen la geografía, el clima, la hidrología, la ecología y la historia. Por ejemplo, la distribución de los recursos hídricos puede influir en los patrones de asentamiento, el uso de la tierra y las actividades económicas, mientras que los factores culturales e históricos pueden influir en las

actitudes y los valores hacia el agua y la gestión del agua. Comprender los territorios hidrosociales es importante para promover prácticas de gestión del agua más sostenibles y equitativas. Esto implica reconocer las dimensiones sociales, culturales y políticas de la gestión y la gobernanza del agua, y trabajar para garantizar que los recursos hídricos se gestionen de manera equitativa, sostenible y que responda a las necesidades y aspiraciones de todos los miembros de una comunidad o sociedad determinada.

Conclusiones: territorios hidrosociales amazónicos

"La vida comienza en el agua; ésta es la sangre de la tierra, la hace vivir. Los ríos o lagunas son una matriz de sustento y abundancia." (Museo Arqueológico y Centro Cultural de Orellana 2022). Esta tesis comenzó con un epígrafe que hacía alusión a escuchar al río para aprender de él y de sus dinámicas. Aprehendiendo las enseñanzas de los ríos se puede reescribir la cita sobre los ríos y la vida para vincularla al conocimiento: El saber comienza en el agua; ésta es el camino del saber del ser humano, lo hace avanzar. Los ríos o cuerpos de agua son una matriz de conocimiento y experiencia.

Conclusiones: llegada a puerto

El espacio se produce, no es una causalidad aislada ni una externalidad. En consecuencia, el espacio fluvial, acuático o hidrosocial tampoco se genera de forma aleatoria o bajo fuerzas abstractas o indescifrables. El espacio fluvial se construye desde la interacción de acciones individuales y colectivas en distintas escalas tanto de lugar como de tiempo. El análisis de las morfologías requiere el estudio a través del tiempo, pués son las acciones del pasado las que influyen en el presente y generan nuevas respuestas, nuevas acciones. La memoria ejecuta un papel categórico al momento de compaginar los componentes intangibles de las geografías del agua. Es a través de la memoria y el relato que se extraen relaciones, construcciones e imaginarios colectivos que dibujan un mapa del origen de las ciudades y su evolución. La reconstrucción de eventos y la observación de sucesos simultáneos permite establecer los fundamentos que dan forma a las sociedades (vertebración urbana).

Además de la memoria otro componente intangible de las geografías del agua que resulta primordial para definir los atributos de la vertebración urbana son las relaciones hidrosociales

entretejidas entre las prácticas materiales, el culto al agua y los flujos de agua y poder. Las relaciones hidrosociales en las ciudades amazónicas se sobreponen unas con otras. La jerarquía fluvial se reproduce a nivel de las relaciones hidrosociales y crea mosaicos y paisajes hidrosociales complejos y mutables.

Las relaciones hidrosociales amazónicas se visualizan en las siguientes formaciones o enlaces: I) agua-alimentación, debido a la importancia que mantienen los ríos tanto en el abastecimiento de productos como para la pesca; II) tesistencia-agua-vivienda, relacionada con las luchas de los pobres urbanos, o los marginados por acceder a las riberas y a los recursos básicos para subsistir, además de generar modalidades de apropiación que representan la búsqueda de mecanismos para mejorar la vida urbana en las riberas y aplican modos de habitar respetuosos de las dinámicas de los ríos; III) agua-turismo, vinculada con las economías y con los escenarios e imágenes de la ciudad, los frentes fluviales como foco de representación y activación económica, cultural y social; IV) Agua-extractivismo, que se relaciona tanto con actividades petroleras y mineras como también el extractivismo energético con la presencia de infraestructuras de control y manejo del agua como las hidroeléctricas.

Los flujos de poder están estrechamente relacionados con los flujos de agua. Debido a que los recursos hídricos son indispensables tanto para la supervivencia humana como para la actividad económica. La gestión y el control de estos recursos produce notables implicaciones sociales, económicas y políticas. En el modelo de urbanización actual, tanto el control como la gestión de los recursos hídricos están estrechamente ligados a las dinámicas de poder ejercidas por actores dominantes como gobiernos, élites, o empresas, que ejercen influencia sobre los recursos hídricos con la finalidad de conseguir sus propios intereses, principalmente vinculados a la acumulación del capital.

Una de las formas de control hídrico en la Amazonía se manifiesta en la acaparación del acceso y control del agua para priorizar usos industriales o agrícolas sobre usos como el doméstico. Estas relaciones hidrosociales que se forman a partir de relaciones de poder asimétricas tienen importantes consecuencias tanto sociales como ambientales. La concentración del poder hídrico a manos de hegemonías de poder o élites minoritarias puede llevar a la marginalización de comunidades o al agotamiento y degradación de los recursos hídricos. Por el contrario, la descentralización del poder y el control sobre los recursos hídricos puede ayudar a promover prácticas de gestión del agua más equitativas y sostenibles. En la búsqueda de promover y generar prácticas de gestión del agua más sostenibles y equitativas se debe comprender el vínculo existente entre los flujos de agua y los flujos de

poder. Ya que, reconociendo las formas en que las dinámicas de poder influyen en la gestión y la gobernanza del agua, se puede trabajar en la promoción de enfoques más participativos y justos para la gestión del agua priorizando la sostenibilidad social y ambiental.

La gestión y la gobernanza del agua, así como el uso y apropiación van más allá de la cuestión técnica y responden a lógicas sociales y políticas complejas. El territorio hidrosocial se define por la interacción entre los elementos de la siguiente tríada: los recursos hídricos, la ciudad y las estructuras de poder. Esta tríada a su vez se puede ver influenciada por una variedad de factores e interconectada siguiendo diversos procesos y flujos. Entre las esferas que influyen en los factores y los procesos del territorial hidrosocial se encuentran la cultura, la identidad, la historia, la política y la economía.

Si se pusiera en dos extremos a el tipo de ciudad que se producen de la interacción hidrosocial de los tres elementos, habría por un lado ciudades en las que los recursos hídricos se encuentren controlados por hegemonías de poder que podrían tomar forma de actores como gobiernos o transnacionales y estos actores tendrían a su disposición la batuta para la gestión y manejo de agua, ya sea priorizando ciertos usos o incluso priorizando unos usuarios sobre otros generando con ello un perjuicio hacia los pobres urbanos y/o al medio ambiente; y en el otro extremo, habría ciudades cuyos recursos hídricos se gestionan a través de sistemas horizontales centrados en la comunidad o sistemas de conocimientos ancestrales, cuya prioridad es el acceso equitativo al recurso, la preservación para la sostenibilidad y la aplicación de valores culturales basados en la justicia social.

Otro aspecto espacial y tangible de las geografías del agua y los territorios hidrosociales, son los paisajes del agua como imagen o escenarios representativos que reflejan las subjetividades construidas de la relación existente entre las personas y el agua. Estos escenarios emplean aspectos visuales, estéticos y culturales del agua, y aunque generalmente son tangibles también conservan un carácter abstracto que nace de los imaginarios. En las ciudades amazónicas, los ríos son parte fundamental del imaginario colectivo y representativo de las mismas. En la Amazonía, el culto al agua, como elemento de orígen de la vida y como deidad genera prácticas de conservación principalmente en las comunidades ribereñas indígenas, mientras que en las ciudades se observa un escenario de desigualdades bordadas a lo largo de los ríos. Los escenarios hidrosociales también tienen la facultad de transmutar hacia mecanismos de impacto que de puede ser aprovechado de forma significativa en la concepción del espacio público. El diseño de escenarios hidrosociales puede influir en la forma en que las personas interactúan y perciben el agua en su entorno.

Como ejemplo de la influencia de los escenarios hidrosociales en el espacio concebido, se tiene a los malecones, los cuales dependiendo de su diseño pueden motivar a las personas a pasar tiempo cerca del agua, promoviendo la interacción social y la recreación. De manera similar, el diseño de espacios del agua en espacios públicos puede mejorar el atractivo visual y el significado cultural de un lugar. Sin embargo, también existen implicaciones negativas en los escenarios hidrosociales relacionadas principalmente a la contaminación y degradación del ambiente. Ejemplo de ello es la construcción de represas y otras infraestructuras de gestión del agua crean barreras que interrumpen los flujos naturales de agua, alterando los ecosistemas e provocando presiones a las comunidades ribereñas.

Los escenarios son la imagen que refleja la relación hidrosocial mientras que los paisajes hidrosociales son la construcción de mosaicos diversos que reflejan los flujos de agua y poder y evidencian producción urbana desigual, fragmentada, consolidada o dispersa. De esta forma, los escenarios ilustran mayoritariamente los procesos intangibles de las geografías del agua mientras los paisajes del agua dibujan la configuración espacial y los procesos urbanos involucrados en la producción urbana. La conjugación de los escenarios y los paisajes permiten analizar al territorio hidrosocial como articulador territorial.

Actualmente, los paisajes del agua amazónicos se ven afectados negativamente debido a la depredación del bosque primario y la deforestación que acentúan el cambio climático generando cambios tanto en la disponibilidad de agua, como también en el aumento de la frecuencia e intensidad de las lluvias. En general, los paisajes del agua amazónicos juegan un rol importante en la configuración territorial, y sus características físicas, sociales y culturales no solo permiten comprender su complejidad sino también hacer visible su vulnerabilidad. Esta última es crucial en la gestión de los recursos hídricos para la creación de ciudades vivas y sanas.

Además de la influencia significativa en el funcionamiento de las ciudades, las geografías (morfologías) del agua están estrechamente relacionadas con el desarrollo y la forma que se genera al producir ciudad. El agua, en las ciudades no aparece solamente en los ríos, lagunas o canales, sino que se encuentra estructurando todo el proceso de urbanización desde sus sistemas de aguas hasta su presencia en plazas, espacio público, etc. El agua se encuentra profundamente integrada en el tejido urbano. La manera en que el agua se integra en el proceso de urbanización tiene una repercusión en las características físicas, sociales, culturales y económicas de la ciudad.

Históricamente, en los cursos del agua se han realizado desvíos para suplir los usos humanos, ya sea para riego o por el agua potable. Los ríos han sido aprovechados desde el surgimiento de las sociedades. La Amazonía no es una excepción, así como se modificaba el suelo para el cultivo, los ríos amazónicos también han sido aprovechados por las poblaciones ribereñas desde antes de la conquista. Sin embargo, esto no quiere decir que no existan prácticas que perjudican y destruyen a los ríos. Actualmente, las infraestructuras hídricas, desde el sistema de captación y distribución de agua hasta las hidroeléctricas, son el mayor elemento hidrosocial que afecta e influye en la morfología de las áreas urbanas.

Las ciudades amazónicas, portuarias y ubicadas a lo largo de cuerpos de agua tienden a tener una morfología orientada hacia el frente fluvial o ribereño, es decir, sus calles, sus edificios o hitos arquitectónicos, entre otros elementos se conciben y se construyen siguiendo esta condición. Los frentes fluviales generalmente funcionan como puntos focales para actividades comerciales y de intercambio, para el transporte, para la recreación, para la producción de hábitat, y para brindar elementos tangibles e intangibles que dan forma y refuerzan la identidad de la ciudad y la identidad colectiva e individual de quienes la habitan.

En las ciudades amazónicas, los frentes fluviales representan una imagen contrastiva de sus realidades, por un lado, se puede observar escenarios donde la intervención y la inversión estatal, o incluso donde las regalías de las actividades extractivas producen hitos arquitectónicos, o espacios considerados como expansores urbanos, Sin embargo, simultáneamente se muestran también escenarios de abandono, relegados a la suerte de quienes deciden habitarlos y hacerlos habitables y apelando a la piedad del río, cuando este se constituye en un riesgo. De esta manera, el agua forma rutas que se ven definidas también de forma hídrica y social.

Las rutas del agua dentro del modelo de urbanización planetaria, no se pueden considerar como caminos enteramente naturales, sino más bien socionaturales. En consecuencia, los ríos forman una cadena o más bien un entretejido de redes que se une a la red urbana. En esta red, cuando un río o un cauce se ve afectado existen repercusiones en todo el sistema, como si se tratara de una serie, lo que sucede aguas arriba afecta aguas abajo, pero eso no quiere decir que el flujo de consecuencias fluya en una sola dirección o sentido. De la misma manera, un evento que se genera aguas abajo puede llegar a tener consecuencias aguas arriba.

Los territorios hidrosociales se componen de complejas y dinámicas relaciones sociales, culturales, políticas y económicas que se desarrollan en torno a los recursos hídricos en un

área geográfica determinada. En los territorios hidrosociales, el agua es reconocida como un recurso físico, social, cultural y político, con significaciones híbridas y trascendencia en los procesos. En la urbanización amazónica, estos territorios responden a procesos multiescalares en el tiempo y en el espacio, es decir, que la influencia de procesos como la colonización siguen vigentes y se mantienen en la memoria tanto de las personas como del territorio y los ríos generando desigualdades y geografías injustas que reproducen modos de control y lógicas depredadoras de los recursos naturales (agua y selva).

Limitaciones, recomendaciones y agenda futura

El alcance de esta investigación y sus resultados son una capa superficial de la complejidad de la urbanización amazónica y sus geografías, por ello, se redacta esta sección enfocada en las limitaciones del estudio tanto a nivel metodológico como a nivel de resultados y conclusiones; con la misma finalidad, se incluyen recomendaciones y una agenda futura que surgen en base a estas limitaciones y al interés investigativo de la autora por enriquecer el campo de los estudios urbanos desde una mirada de las ciudades amazónicas y los elementos socionaturales en ellas.

Limitaciones

Las principales limitaciones de esta investigación se clasifican en dos: I) limitaciones metodológicas y II) limitaciones de la investigadora. En las limitaciones metodológicas se encuentra como principal elemento el hecho de que este estudio es una versión empírica y exploratoria que combina diversas estrategias metodológicas en la búsqueda de la comprensión de los territorios hidrosociales y las morfologías urbanas, por ello existieron marcos metodológicos no se lograron integrar correctamente al estudio, principalmente los relacionados con información económica y demográfica de la población. El censo disponible es del año 2010 y presenta un desfase importante en relación a otros datos recolectados. Así mismo, en el empleo de mapas de coberturas existieron años (2022) que no contaban con la información cartográfica necesaria para realizar un análisis de métricas de paisaje con 100% de precisión. La presencia de nubes es considerable en la época lluviosa y por ello, se dificulta realizar un análisis estacionario que visibilice la dinámica existente en los sistemas hídricos.

En las limitaciones encontradas en relación a la investigadora, se encuentra principalmente el hecho de que a pesar de la formación urbana de la autora, en los estudios hidrosociales se busca un estudio multidisciplinario el cual por el carácter de esta investigación se vio limitado a la perspectiva y conocimiento de la investigadora. Por ello, se encontraron temas como la

reticularidad y la red hidrosocial, la fragmentación, y la morfología de las ciudades amazónicas como temas que se pueden profundizar mucho más y complementar más detalladamente. Por esta razón, se recomienda enriquecer esta investigación desde múltiples visiones, conocimientos y saberes.

Recomendaciones

Se recomienda continuar aportando desde la multidisciplinariedad con teorías y nuevas formas de leer la amazonía. Empleando esta investigación como introducción, se recomienda abordar a los territorios hidrosociales de forma más rigurosa y pulir el proceso empírico aquí desarrollado e incluir en esta lectura amazónica epistemologías de los vulnerables, de los dispersos, de género, de los racializados y muchas más que habitan y contribuyen a construcción de ciudad incluso cuando se ubican en el extremo opuesto del constructo de lo urbano.

Se recomienda abordar procesos de coyuntura como: la colonización interna, el boom cauchero, los desastres socionaturales, las prácticas de las poblaciones indígenas en los ríos urbanos y muchos temas más y la crear un rastro de las geografías del agua y posibles efectos en la ciudad amazónica del futuro.

En relación con el uso y análisis de métricas del paisaje, se recomienda considerar una mayor especificidad de los usos de suelo y coberturas, es decir mantener la variedad de usos de suelo lo más cercana a la realidad para visualizar de forma detallada y precisa los efectos de los procesos relacionados al uso del suelo en la ciudad y viceversa, ejemplo de ello, puede ser el identificar las plantaciones de palma africana, el café o incluso la actividad piscícola para comprender su influencia en la forma urbana u otros medios. Esto debido a que, aunque no se menciona en esta tesis, se evidenciaron durante el análisis la importancia del suelo agrícola, mismo que cumple un rol determinante más allá de los paisajes hidrosociales y su configuración.

La última recomendación es considerar el final de este trabajo investigativo como una llegada a puerto, pero no a un destino último, un arribo después de un viaje largo, a veces cansado, muchas veces emocionante, un viaje aventurero y exploratorio que consistió principalmente en transformarse en un ser contemplativo y reflexivo abandonando prejuicios para viajar ligero. Un viaje cuyo camino ahora resulta menos desconocido pero que aún guarda muchos secretos por explorar.

Agenda futura

Esta agenda futura es un compromiso de la autora frente a la potencialidad de futuras investigaciones que se inscriben en la discusión teórica y metodológica de la investigación de lo socionatural y lo urbano. Entre los debates más relevantes que se considera continuar estudiando se encuentran: i) discusiones que involucran el aspecto económico de los ríos, es decir, como los ríos son elementos de históricos de drenaje de renta y de riqueza (Bartoli 2022), para ello, se pretende partir del estudio de Corrêa (2004) que menciona que existen interacciones espaciales específicas que dinamizan la espacialidad del ciclo de reproducción del capital, entre ellas se encuentra el drenaje de renta de suelo el cual desde el binocular de los ríos puede permitir observar las rupturas y permanencias en las estructuras espaciales que se gestan bajo la complejidad y la multicausalidad. ii) estudio de redes, huellas y rutas del agua vinculada a diversos ambitos de la producción territorial como la economía popular indígena, entre otros. iii) estudios comparativos de la configuración hidrosocial intra Panamazónica, considerando las diferencias y encuentros en la producción espacial y de agua en la Amazonía ecuatoriana, colombiana, brasileña, peruana, etc. Finalmente, practicar una ciencia abierta compartiendo los avances y estudios a través del trabajo y aporte en el Observatorio para la urbanización Amazónica (FLACSO-2023).

Referencias

- Acuña, Cristóbal de. 2009. "Nuevo descubrimiento del gran río de las Amazonas." Nuevo descubrimiento del Gran río de las Amazonas: 1-181.
- Alcázar, Fernando Roca. 2021. "Los recursos amenazados de la Amazonia." Etudes: 19-28. Alexiades, Miguel, and Daniela Peluso. 2016. "La urbanización indígena en la Amazonia. Un nuevo contexto de articulación social y territorial." Gazeta de Antropología 32 (1).
- Alimonda, Héctor. 2016. "Notas sobre la ecología política latinoamericana: arraigo, herencias, diálogos." Ecología política (51): 36-42.
- ---. 2017. "En clave de sur: La ecología política latinoamericana y el pensamiento crítico." Ecología política latinoamericana. Pensamiento crítico, diferencia latinoamericana y rearticulación epistémica 1: 33-49.
- Amaral, Silvana, Ana Paula Dal'Asta, Newton Brigatti, Carolina Moutinho Duque de Pinho, Liliam César de Castro Medeiros, Pedro Ribeiro de Andrade, Taíse F Pinheiro, Pedro Assumpção Alves, Maria Isabel Sobral Escada, and Antônio Miguel Vieira Monteiro. 2013. "Comunidades ribereñas como forma socioespacial de expresión urbana en la Amazonia: una tipología para la región del Baixo Tapajós (Pará-Brasil)." Revista Brasileira de Estudos de População 30 (2): 367-399.
- Angell, María Alexia León. 2019. "Territorio Dinámico y Paisaje Inter-escalar Wamansamanas en la Amazonía del Perú."
- Angeoletto, Fabio Henrique Soares. 2012. "Planeta ciudad: ecología urbana y planificación de ciudades medias de Brasil."
- Arahuetes, Ana, Rubén Villar, and María Hernández. 2016. "El ciclo hidrosocial en la ciudad de Torrevieja: retos y nuevas tendencias." Revista de Geografía Norte Grande (65): 109-128.
- Arroyo-Rodríguez, Víctor, Claudia E Moreno, and Carmen Galán-Acedo. 2017. "La ecología del paisaje en México: logros, desafíos y oportunidades en las ciencias biológicas."

 Revista mexicana de biodiversidad 88: 42-51.
- Astelarra, Sofía. 2018. "La memoria del agua: el agua es río y el río es memoria." Estudios del hábitat 16.
- Barbieri, Alisson F, Roberto LM Monte-Mór, and Richard E Bilsborrow. 2009. "Towns in the jungle: exploring linkages between rural-urban mobility, urbanization and development in the Amazon." Urban Population-Environment Dynamics in the Developing World: Case Studies and Lessons Learned: 247-279.
- Barclay, Frederica. 1998. "Sociedad y economía en el espacio cauchero ecuatoriano de la cuenca del río Napo, 1870-1930." Fronteras, colonización y mano de obra indígena. Amazonía andina (siglos XIX-XX): 125-238.
- Bartoli, Estevan. 2018a. "Cidades na Amazônia, sistemas territoriais e a rede urbana." Mercator (Fortaleza) 17.
- ---. 2018b. "Entre o Urbano eo Ribeirinho: Territorialidades Navegantes e Sistemas Territoriais em Parintins (AM)." Espaço Aberto 8 (2): 169-185.
- ---. 2020a. "A CIDADE ARQUIPÉLAGO: EXPANSÃO E MORFOLOGIA URBANA DE PARINTINS (AM)." RDE-Revista de Desenvolvimento Econômico 2 (46).
- ---. 2020b. "Cidades pequenas na Amazônia: sítio, situação e sistemas territoriais de Barreirinha (AM)." GOT Journal of Geography and Spatial Planning (19): 132-157. https://doi.org/10.17127/got/2020.19.006.
- ---. 2022. "Sistemas territoriais na Amazônia e o papel das cidades para o desenvolvimento regional: a biorregião de Parintins (am)." Eutopía. Revista de Desarrollo Económico Territorial (21): 30-51.

- Bayón Jiménez, Manuel, and Íñigo Arrazola Aranzábal. 2020. "Discusión del común multiescalar a partir del Territorio de los Pueblos Aislados." Universitas (32): 37-54. https://doi.org/10.17163/uni.n32.2020.02.
- Bayón, Manuel. 2019. "Una mirada de la Amazonía a través de la urbanización." Geografía Crítica para Detener el Despojo de los Territorios; Abya-Yala: Quito, Ecuador: 191-205.
- Bayón, Manuel, Gustavo Durán, Alejandra Bonilla, Mario Ávila, and Margarete Araujo. 2020. "VIII. El Pangui: Urbanización en la Amazonía Sur–entre."
- Bernabeu, María Marta. 2019. "La urbanización del agua en el Área Metropolitana de Mendoza." Estudios Sociales Contemporáneos (21): 176-197.
- Besteiro, Ana G. 2020. "Los estudios sociales del agua y la acción ambiental¿ innovación o impostura?" XI Congreso Ibérico de Gestión y Planificación Del Agua.
- Bilsborrow, Richard E, Alisson F Barbieri, and William Pan. 2004. "Changes in population and land use over time in the Ecuadorian Amazon." Acta Amazonica 34 (4): 635-647.
- Birche, Mariana, and Karina Jensen. 2018. "El paisaje en el espacio público como medio de integración entre la ciudad y el agua." Revista de Urbanismo (39): 1-16.
- ---. 2019. "La integración paisajística en el crecimiento urbano. Transformaciones en la periferia platense." Bitácora Urbano Territorial 29 (3): 145-154.
- Borja, Jordi, and Zaida Muxí. 2003. "El espacio público: ciudad y ciudadanía."
- Bosch Estrada, Patricia A. 2004. "El perfil urbano como patrimonio paisajístico." Anales LINTA.
- Bottaro, Lorena, Alex Latta, and Marian Sola. 2014. "La politización del agua en los conflictos por la megaminería: Discursos y resistencias en Chile y Argentina." European Review of Latin American and Caribbean Studies/Revista Europea de Estudios Latinoamericanos y del Caribe: 97-115.
- Brenner, Neil. 2013. "Tesis sobre la urbanización planetaria." Nueva sociedad (243): 38-66. Budds, Jessica. 2011. "Relaciones sociales de poder y la producción de paisajes hídricos."
 - Justicia hídrica: Acumulación, conflicto y acción social: 59-69.
- ---. 2012. "La demanda, evaluación y asignación del agua en el contexto de escasez: un análisis del ciclo hidrosocial del valle del río La Ligua, Chile." Revista de Geografía Norte Grande (52): 167-184.
- Budds, Jessica, and Leonith Hinojosa. 2012. "Restructuring and rescaling water governance in mining contexts: The co-production of waterscapes in Peru." Water Alternatives 5 (1): 119.
- Buitrago, Alejandra Paola Marín, and Luis Fernando Acebedo Restrepo. "Bordes urbanos y complejidad Estudio de caso Rio Otún Conurbación Pereira-Dosquebradas Por."
- Buzai, Gustavo, Sonia Lanzelotti, Luis Humacata, Noelia Principi, Gabriel Acuña Suárez, and Claudia Baxendale. 2017. "EJE 06-01 Análisis espacial y evaluación de zonas de potenciales conflictos ambientales, productivos y patrimoniales ante la expansión urbana en la cuenca del río Luján (Provincia de Buenos Aires, Argentina). Aplicación: La expansión urbana en Luján y los potencial." Memorias y Boletines de la Universidad del Azuay (XVI): 245-252.
- Cabrera-Barona, Pablo F., Manuel Bayón, Gustavo Durán, Alejandra Bonilla, and Verónica Mejía. 2020. "Generating and Mapping Amazonian Urban Regions Using a Geospatial Approach." ISPRS International Journal of Geo-Information 9 (7). https://doi.org/10.3390/ijgi9070453.
- Cabrero, Ferran. 2022. "Omaguas crepusculares: Identidad y aculturación de un pueblo amazónico (siglos xvii, xviii y xix)." Revista Chakiñan de Ciencias Sociales y Humanidades (16): 211-225.

- Capel, Horacio. 2002. La morfología de las ciudades. Tomo I: Sociedad, cultura y paisaje urbano. Vol. 37. Ediciones del Serbal, SA.
- Cardoso, Ana, Claudia Duarte, José Júlio Ferreira Lima, Juliano Pamplona Ximenes Ponte, Raul da Silva Ventura Neto, and Roberta Menezes Rodrigues. 2020. "Morfologia urbana das cidades amazônicas: a experiência do Grupo de Pesquisa Cidades na Amazônia da Universidade Federal do Pará." urbe. Revista Brasileira de Gestão Urbana 12.
- Cardoso, Rodrigo, and Evert Meijers. 2020. "The process of metropolization in megacity-regions." In Handbook of Megacities and Megacity-Regions. Edward Elgar Publishing.
- Carrión, Fernando. 2019. "El espacio público es una relación no un espacio." Derecho a la ciudad: Una revocación de transformaciones urbanas en América Latina: 191-219.
- Castree, Noel. 2003a. "Environmental issues: relational ontologies and hybrid politics." Progress in human geography 27 (2): 203-211.
- ---. 2003b. "Place: connections and boundaries in an interdependent world." Key concepts in geography: 165-186.
- CEPAL, Patrimonio Natural. 2013. "Amazonia posible y sostenible." Bogotá, CEPAL y Patrimonio Natural.
- Chabrera, Vicente Ortells. 1992. "Macrocefalia urbana y desequilibrios territoriales en América Latina." Boletín de la asociación de geógrafos españoles (15): 175-188.
- Charity, S, N Dudley, D Oliveira, and S Stolton. 2016. "Amazonía Viva-Informe 2016: Un enfoque regional para la conservación en la Amazonía." Iniciativa Amazonía Viva de WWF, Brasilia y Quito.
- Chávez Salazar, Ricardo Lenín. 1999. "Protección ambiental y explotación petrolera en la Región Amazónica Ecuatoriana."
- Colectivo de Geografia Crítica del Ecuador, Quito. 2018. "Geografiando para la resistencia. Los feminismos como práctica espacial." Cartilla 3.
- Córdova, Juan Pablo, Christian Hernán Contreras-Escandón, and Albarracín-Vélez Giovanny Marcelo. 2020. "Territorio hidrosocial de la ciudad de Cuenca-Ecuador." XI Simposio Nacional de Desarrollo Urbano y Planificación Territorial, Octubre.
- Corrêa, Roberto Lobato. 2004. "Rede urbana." Revista Cidades 1 (1): 65-78.
- ---. 2006. Estudos sobre a rede urbana. Bertrand Brasil.
- Côrtes, Julia Corrêa, Álvaro De Oliveira D'Antona, and Ricardo Ojima. 2020. "Urbanização extensiva e reconfiguração rural na Amazônia: uma proposta teórico-metodológica baseada em indicadores demográficos e espaciais." Revista Brasileira de Estudos Urbanos e Regionais. https://doi.org/10.22296/2317-1529.rbeur.202015.
- Crespo, Hernan Ibarra, María Elena Porras, Carlos Contreras, and Daniel Granda. 1999. "La guerra de 1941 entre Ecuador y Perú: Una reinterpretación." Quito, Caap: 82.
- Cruz-Muñoz, Fermín. 2021. "Patrones de expansión urbana de las megaurbes latinoamericanas en el nuevo milenio." EURE (Santiago) 47 (140): 29-49.
- Cuvi, Nicolás. 2016. "Introducción. Procesos socioambientales en territorios amazónicos." Letras Verdes. Revista Latinoamericana de Estudios Socioambientales (20): 1-3.
- da Costa, Sandra Maria Fonseca, and Nilton Carlos Rosa. 2017. "O processo de urbanização na Amazônia e suas peculiaridades: uma análise do delta do rio Amazonas." Revista Políticas Públicas & Cidades-2359-1552 5 (2): 81-105.
- Dal'Asta, Ana Paula, Silvana Amaral, and Antônio Miguel Vieira Monteiro. 2017. "Um modelo para a representação espaço-temporal do fenômeno urbano na Amazônia Contemporânea." Revista Políticas Públicas & Cidades-2359-1552 5 (2): 17-37.
- Dal'Asta, Ana Paula, Silvana Amaral, and Antônio Miguel Vieira Monteiro. 2014. "O Rio e as cidades: uma análise exploratória de dependências e alcances das comunidades do

- Arapiuns (Pará-Brasil) e da formação do urbano na Amazônia." Revista Espinhaço UFVJM: 98-109.
- Damonte, Gerardo, and Barbara Lynch. 2016. "Cultura, política y ecología política del agua: una presentación." Anthropologica 34 (37): 5-12.
- Damonte Valencia, Gerardo Héctor. 2015. "Redefiniendo territorios hidrosociales: control hídrico en el valle de Ica, Perú (1993-2013)." Cuadernos de Desarrollo Rural 12 (76): 109-133.
- de Tomas Medina, María del Carmen. 2021. "La Representación gráfica de la morfogénesis urbana como método para el estudio de la ciudad." Avances en educación superior e investigación: Volumen I.
- del Pilar Gamarra, María. 1996. "La frontera nómada: frentes y fronteras económicas en el proceso cauchero ecuatoriano (1870-1920)." Procesos: Revista ecuatoriana de historia (9): 39-79.
- Del Rosario, Pedro Juan. 2021. "Territorios y conflictos hidrosociales." Desarrollo y Territorio (10): 5-22.
- Delgado Ramos, Gian Carlo. 2015. "Complejidad e interdisciplina en las nuevas perspectivas socioecológicas: la ecología política del metabolismo urbano." Letras Verdes. Revista Latinoamericana de Estudios Socioambientales (17): 108-130.
- Duarte, Álvaro Andrés Santoyo. 2021. "Formas, sistemas y ensambles. Elementos para una geografía de la urbanización de la Amazonía colombiana." Revista Ciudades, Estados y Política 8 (3): 147-162.
- Durán Díaz, Pamela. 2014a. "El río como eje de vertebración territorial y urbana: el río San Marcos en Ciudad Victoria, México."
- ---. 2014b. "La vertebración urbana a partir de las geografías del agua: El paisaje como un elemento de identidad." Revista Internacional de Ciencias Sociales y Humanidades, SOCIOTAM 24 (1): 51-70.
- Durán, Gustavo, Manuel Bayón Jiménez, and Alejandra Bonilla. 2020. "Habitar ante la cotidianidad de la contaminación del agua: contestaciones a las actividades extractivas en las periferias urbanas de Ecuador." Antípoda. Revista de Antropología y Arqueología (39): 17-39. https://doi.org/10.7440/antipoda39.2020.02.
- Erazo Chalco, Nancy Paulina. 2017. "La red urbana amazónica: análisis multiescalar de la dinámica de urbanización." Quito, Ecuador: Flacso Ecuador.
- Erreguerena, Fabio. 2022. "Repolitizar los territorios. Reflexiones sobre los conceptos de territorio y poder en la extensión universitaria."
- Ferraro, Rosana, Laura Zulaica, and Héctor Echechuri. 2013. "Perspectivas de abordaje y caracterización del periurbano de Mar del Plata, Argentina." Letras Verdes. Revista Latinoamericana de Estudios Socioambientales (13): 19-40.
- Fonstad, Mark A. 2013. "Geographies of water." Annals of the Association of American Geographers 103 (2): 251-252.
- Fontaine, Guillaume. 2005. "Microconflictos ambientales y crisis de gobernabilidad en la Amazonía ecuatoriana." ICONOS. Revista de Ciencias Sociales (21): 35-46.
- Fragkou, Maria-Christina, Tamara Monsalve-Tapia, Vicente Pereira-Roa, and Maximiliano Bolados-Arratia. 2022. "Abastecimiento de agua potable por camiones aljibe durante la megasequía. Un análisis hidrosocial de la provincia de Petorca, Chile." EURE (Santiago) 48 (145): 1-22.
- Funcionario Público, Dirección de Agua Potable y Alcantarillado del GAD Municipal de Orellana. 2022. Ciclo hidrosocial: red de alcantarillado de El Coca. edited by Sánchez Rojas Yosselyn Anabel.
- GAD Municipal Francisco de Orellana, Gobierno Autónomo Descentralizado 2019. "Plan de Desarrollo y Oredenamiento Territorial 2014-2019."

- García, Lorenzo. 1999. "Historia de las Misiones en la Amazonía Ecuatoriana."
- García-Estrada, Lorena, and Juan Hernández-Guerrero. 2020. "Ciclo hidrosocial y acceso al agua en la periferia de la ciudad de Morelia, México: Estudio de caso en La Aldea." Revista Geográfica de América Central (64): 245-273.
- Gil de Arriba, Carmen. 2015. "El turismo fluvial y su cementerio de despojos en los bordes del Canal du Midi." Via. Tourism Review (8).
- Gobierno Autónomo Descentralizado Municipal Francisco de Orellana, GAD de Orellana. 2023. "Plan de Desarrollo y Ordenamiento Territorial del Cantón Francisco de Orellana." 2023: 816.
- González, Angel. 1985. Río Napo: realidad amazónica ecuatoriana. Ediciones CICAME, Vicariato Apostólico de Aguarico.
- González Comín, Francisco Javier. 2021. "La producción del espacio urbano amazónico: nuevos ejes de expansión de la frontera urbano-extractiva en la provincia de Orellana (2001-2020)."
- Guerrero Cazar, Fernando. 2017. "Transformaciones territoriales en la Amazonía: indígenas, campesinos, fronteras y colonización/ Territorial transformations in the Amazon: indigenous, peasants, borders and colonization." Eutopía, Revista de Desarrollo Económico Territorial (12). https://doi.org/10.17141/eutopia.12.2017.3134.
- Harvey, David. 2018. Justicia, naturaleza y la geografía de la diferencia. Traficantes de sueños.
- ---. 2021. Espacios del capitalismo global: Hacia una teoría del desarrollo geográfico desigual. Vol. 120. Ediciones Akal.
- Herrera, Doris. 1996. "La Cuenca Amazónica de cara al nuevo siglo."
- Herrera Montero, Luis A, and Lucía Herrera Montero. 2020. "Territorio y territorialidad: Teorías en confluencia y refutación." Universitas-XXI, Revista de Ciencias Sociales y Humanas (32): 99-120.
- Instituto del Bien Común, IBC. 2018. "La interacción con los Andes propició la diversidad de la Amazonía." Accessed 13/08/2021. https://ibcperu.org/la-interaccion-con-los-andes-propicio-la-diversidad-de-la-amazonia-segun-estudio/.
- Instituto Nacional de Estadísticas y Censo de Ecuador, INEC. 2010. "Censo de Población y Vivienda." Ecuador. http://www.ecuadorencifras.gob.ec/censo-de-poblacion-y-vivienda/.
- Jarrín, Pablo Santiago, Luis Carrillo Tapia, and Giannina Zamora. 2016. "La colonia interna vigente: transformación del territorio humano en la región amazónica del Ecuador." Letras Verdes, Revista Latinoamericana de Estudios Socioambientales (20): 22-43.
- Jarrín Valladares, Pablo Santiago, Luis Tapia Carrillo, and Giannina Zamora. 2017. "Demografía y transformación territorial: medio siglo de cambio en la región amazónica de Ecuador."
- Jiménez, Richard., and Allen Panchana. 2021. "El polémico y costoso proyecto de infraestructura que replantea la energía en Ecuador." https://dialogochino.net/es/clima-y-energia-es/49479-el-polemico-y-costoso-proyecto-de-infraestructura-que-replantea-la-energia-en-ecuador/.
- Kaztman, Rubén. 2001. "Seducidos y abandonados: el aislamiento social de los pobres urbanos." Revista de la CEPAL.
- Koenig, Kevin. 2020. "Cuencas-Sagradas-Bajo-Amenaza."
- Laraque, Alain, Jean-Loup Guyot, and R Pombosa. 2004. "Hidroclimatología del oriente e hidrosedimentología de la cuenca del Napo."
- Larsimont, Robin Sebastien, and Maria Virginia Grosso Cepparo. 2014. "Aproximación a los nuevos conceptos híbridos para abordar las problemáticas hídricas."
- Latour, Bruno. 1993. We have never been modern. Harvard university press.

- Lefebvre, Henri. 1974. "La producción del espacio." Papers: revista de sociología: 219-229.
- Lima, José Júlio Ferreira, and Lucas França Rolim. 2022. "A inserção das cidades na configuração da fronteira amazônica: um estudo de morfologia urbana na região de Carajás, 2010-2020." Novos Cadernos NAEA 25 (4).
- López, Víctor, Fernando Espíndola, Juan Calles, and Janette Ulloa. 2019. Amazonía ecuatoriana bajo presión.
- Luguaña, Alexandra Magaly Lamiña. 2018. "Metodologías de campo para la evaluación de los impactos del urbanismo en los paisajes de la Amazonia indígena ecuatoriana." Investigaciones Geográficas (Mx) (96): 01-20.
- Lukas, Michael, Maria Christina Fragkou, and Alexis Vásquez. 2020. "Hacia una ecología política de las nuevas periferias urbanas: suelo, agua y poder en Santiago de Chile." Revista de Geografía Norte Grande (76): 95-119.
- Manosalvas, R. 2015. "Gestión social de los páramos como territorios hidrosociales." CAMAREM, Octavo encuentro Nacional: Agua, matriz productiva y gestión publicocomunitaria: 211-250.
- Martin, Facundo, and Robin Larsimont. 2014. "L'écologie politique depuis l'Amérique Latine." Actes du Premier Colloque sur "Penser l'écologie politique: Sciences sociales et interdisciplinarité.
- Martínez-Alier, Joan. 2014. "Entre la economía ecológica y la ecología política." Sin permiso 16.
- Maw, Henry Lister. 1829. Journal of a Passage from the Pacific to the Atlantic: Crossing the Andes in the Northern Provinces of Peru, and Descending the River Marañon Or Amazon. London, J. Murray.
- Mejía, Verónica. 2020. "Morfología urbana y proceso de urbanización en Ecuador a través de la imagen satelital nocturna de la Tierra, 1992-2012." EURE (Santiago) 46 (138): 191-214.
- Mendoza Fragoso, Ariana. 2019. "Ontologías del agua y relaciones de poder en torno al paisaje hídrico en el territorio indígena mazahua del estado de México." Revista Colombiana de antropología 55 (1): 91-118.
- Miralles-Guasch, Carme, and Àngel Cebollada i Frontera. 2003. Movilidad y transporte: opciones políticas para la ciudad. Fundación alternativas Madrid.
- Molina, A, M Pozo, and J Serrano. 2018. "Agua, saneamiento e higiene: medición de los ODS en Ecuador." Instituto Nacional de Estadística y Censos y UNICEF (INEC-UNICEF). Ouito, Ecuador.
- Mongua-Calderón, Camilo. 2018. "Caucho, frontera, indígenas e historia regional: un análisis historiográfico de la época del caucho en el Putumayo-Aguarico (Colombia)." Boletín de Antropología Universidad de Antioquia 33 (55): 15-34.
- Monte-Mór, Roberto Luis de Melo. 1994. "Urbanização extensiva e lógicas de povoamento: um olhar ambiental." Território, globalização e fragmentação. São Paulo: HUCITEC/ANPUR 1994: 169-181.
- Monteiro, Evandro Ziggiatti, Silvia Aparecida Mikami Gonçalves Pina, Rodrigo Argenton Freire, and Daniel Teixeira Turczyn. 2020. "O estudo da morfologia urbana na Região Metropolitana de Campinas." urbe. Revista Brasileira de Gestão Urbana 12.
- Moreyra, Cecilia Edith. 2009. "Vida cotidiana y entorno material. El mobiliario doméstico en la ciudad de Córdoba a fines del siglo XVIII." Historia Crítica (38): 122-144.
- Morláns, María Cristina. "Estructura del Paisaje (Matriz, Parches, Bordes, Corredores) sus funciones, Fragmentación del Habitat y su efecto Borde."
- Museo Arqueológico y Centro Cultural de Orellana, MACCO. 2022.

- Nogueira, Ricardo José B. 2003. "Transporte fluvial e território na Amazônia." ARAGÓN, LE e CLÜSENER-GODT, M. Problemática do uso local e global da água da Amazônia. Belém: NAEA: 199-206.
- Oliveira, Vítor. 2018. "Diferentes abordagens em morfologia urbana." Diferentes abordagens em morfologia urbana. Contributos luso brasileiros. Urban Forms. Disponível em: http://vitoroliveira. fe. up. pt uf [Accessed 23 Jul. 2019].
- Orellana, Daniel, Carla Hermida, and María-Augusta Hermida. 2022. "¿ Cerca o lejos? Discursos y subjetividad en las relaciones entre el lugar de residencia y la movilidad." EURE (Santiago) 48 (144): 1-24.
- Ortiz-Báez, Paola, Pablo Cabrera-Barona, and Jan Bogaert. 2021. "Characterizing landscape patterns in urban-rural interfaces." Journal of Urban Management 10 (1): 46-56.
- Panez Pinto, Alexander. 2018. "Agua-Territorio en América Latina: Contribuciones a partir del análisis de estudios sobre conflictos hídricos en Chile." Revista Rupturas 8 (1): 193-217.
- Peluso, Daniela M, and Miguel Alexiades. 2005. "Urban ethnogenesis begins at home: The making of self and place amidst Amazonia's environmental economy." Traditional Dwellings and Settlements Review 16 (2): 1-10.
- Pérez, Mariana Betzabeth Pelayo, and José Gasca Zamora. 2019. "Reconfiguración de un territorio hidrosocial tras la construcción de la presa El Cajón, en Nayarit." región y sociedad 31: e1201-e1201.
- Pinho, CMD de. 2012. "Análise das redes de localidades ribeirinhas Amazônicas no tecido urbano estendido: uma contribuição metodológica." PhD diss., Instituto Nacional de Pesquisas Espaciais.
- Popescu, Claudia, Adriana Mihaela Soaita, and Mihaela Rodica Persu. 2021.

 "Peripheralitysquared: Mapping the fractal spatiality of peripheralization in the Danube region of Romania." Habitat International 107: 102306.
- Programa de las Naciones Unidas para el Medio Ambiente, PNUMA;, and EPN Escuela Politécnica Nacional. 2018. "Informe Final: Resultados de las modelaciones biofísicas, valoración económica y propuesta de políticas Cuenca del Río Coca (Ecuador)." La Economía de los ecosistemas. y la biodiversidad Marzo 2018: 726.
- Proyecto MapBiomas Amazonía, RAISG. 2022. Serie anul de Mapas de Cobertura y uso del Suelo de la Amazonía. edited by Collection-3.0. http://amazonia.mapbiomas.org".
- Quiroz, Franz, Oscar Delgadillo Iriarte, and Durán Nuñez del Prado Durán. 2012. Aguas arriba, aguas abajo: luces y sombras de la gestión integral de los recursos hídricos: reflexiones desde la investigación aplicada. UMSS, Facultad de Ciencias Agrícolas, Pecuarias, Forestales y Veterinarias
- Revista Clubes, Periodismo Libre. 2013. "REPORTAJE: Algunos detalles sobre el puente Labaka y la ciudad del Coca." Revista Clubes. 31 de Julio de 2013.
- Roca-Servat, Denisse, and Lidy Palacio Ocando. 2019. "'Sí a la vida, al agua y al territorio': Relaciones hidrosociales alternativas en Colombia." European Review of Latin American and Caribbean Studies 0 (107). https://doi.org/10.32992/erlacs.10389.
- Rocheleau, Dianne, and Robin Roth. 2007. "Rooted networks, relational webs and powers of connection: Rethinking human and political ecologies." Geoforum 3 (38): 433-437.
- Rodríguez, A. 2017. "Configuración hidrosocial: ¿ paisaje, territorio o espacio." Waterlat-Gobacit Network Working Papers 4 (3): 27-41.
- Rodríguez, C Hurtado, and G De Oliveira Neves. 2015. "El perfil urbano metropolitano andaluz en base a la desagregación territorial de la información demográfica." Análisis espacial y representación geográfica: innovación y aplicación.

- Rondón Ramírez, Gustavo. 2017. "Los territorios hidrosociales de la ciudad de Lamas (San Martín, Perú): agua, sociedad y poder." Espacio y Desarrollo (29): 91-108. https://doi.org/10.18800/espacioydesarrollo.201701.004.
- Ruiz Agudelo, Cesar A., Nestor Mazzeo, Ismael Díaz, Maria P. Barral, Gervasio Piñeiro, Isabel Gadino, Ingid Roche, and Rocio Juliana Acuña-Posada. 2020. "Land use planning in the Amazon basin: challenges from resilience thinking." Ecology and Society 25 (1). https://doi.org/10.5751/es-11352-250108.
- Saguier, Eduardo R, and Museo Roca-CONICET. "Globalización y cabotaje interior del circuito amazónico-platino: Operación "Fitzcarraldo"."
- Sanchis Ibor, Carles, and Rutgerd Boelens. 2018. "Gobernanza del agua y territorios hidrosociales: del análisis institucional a la ecología política."
- Schor, Tatiana, Rogério Ribeiro Marinho, Danielle Pereira da Costa, and José Aldemir de Oliveira. 2014. "Cities, Rivers and Urban network in the Brazilian Amazon." Brazilian Geographical Journal: geosciences and humanities research medium 5 (1).
- Singh, Ajit, Kristina J Thomsen, Rajiv Sinha, Jan-Pieter Buylaert, Andrew Carter, Darren F Mark, Philippa J Mason, Alexander L Densmore, Andrew S Murray, and Mayank Jain. 2017. "Counter-intuitive influence of Himalayan river morphodynamics on Indus Civilisation urban settlements." Nature communications 8 (1): 1617.
- Straccia, Patricio Hernán, and Cynthia Alejandra Pizarro. 2019. "Ecología política: aportes de la sociología y de la antropología."
- Swyngedouw, Erik. 2004. Social power and the urbanization of water: flows of power. OUP Oxford.
- ---. 2011. "¡ La naturaleza no existe! La sostenibilidad como síntoma de una planificación despolitizada/Nature does not exist! Sustainability as Symptom of a Depoliticized Planning." Urban (01): 41-66.
- Swyngedouw, Erik, and Andrew Bovarnick. 1994. La crisis del abastecimiento de agua en la ciudad de Guayaquil. Vol. 7. ILDIS.
- Tapia, Luis. 2004. Territorio, territorialidad y construcción regional amazónica. Editorial Abya Yala.
- Uquilla, Bolivia; Pauker, Polibio. 2022. Memoria sobre El Coca. edited by Yosselyn Sánchez. Uzendoski, Michael A. 2004. "The horizontal archipelago: the Quijos/Upper Napo regional system." Ethnohistory 51 (2): 317-357.
- Valbuena, Ruben. 2008. "Santarém, entre la Amazonia de los ríos y la Amazonia de las carreteras. Nuevas estructuras territoriales en el oeste del Estado de Pará, Brasil, un abordaje geohistórico." Confins. Revue franco-brésilienne de géographie/Revista franco-brasilera de geografia (3).
- Valero Juan, Eva. 2015. "'ENTERAS DE AGUA, LAS CIUDADES': UNA NUEVA POÉTICA URBANA EN ZURITA." Atenea (Concepción) (511): 15-31.
- Vertel, Jairo Durango, Arnulfo Manuel Gómez-Ramos, Richard Miguel Hernández Sabié, Sabrina Hernández López, and Daimyris María González Verbel. 2018. "Naturaleza, sociedad y territorio en la Alta Guajira, Colombia." América Latina en las últimas décadas: procesos y retos.
- Vian, Francisco Durán, and Juan José Pons Izquierdo. 2021. "Ríos y ciudades: análisis de los usos del suelo en el espacio fluvial de las áreas urbanas españolas." Boletín de la Asociación de Geógrafos Españoles (88).
- Vicariato Apostólico de Aguarico. "Fotos de Gamboa y Coca."
- Vilela, Marta, and Paola Moschella. 2017. "Paisaje y expansión urbana sobre espacios naturales en ciudades intermedias. El caso de Purrumpampa en Huamachuco, La Libertad, Perú." Bulletin de l'Institut français d'études andines (46 (3)): 529-550.

- Villamizar Duarte, N, and HV Talavera Dávila. 2018. Bordes Urbanos Procesos de construcción territorial. Centro de Divulgación y Medios de la Facultad de Artes de la Universidad.
- von Medeazza, Gregor Meerganz. 2006. "Flujos de agua, flujos de poder. La aportación de Erik Swyngedouw al debate sobre los recursos hídricos en Latinoamérica y en el Estado español." Documents d'anàlisi geogràfica (47): 129-139.
- Whatmore, Sarah. 2002. Hybrid geographies: Natures cultures spaces. Sage.
- Wilson, Japhy, Manuel Bayón, and Henar Diez. 2015. "Posneoliberalismo y urbanización plantearia en la Amazonía ecuatoriana." Revista Economía 67 (105): 29-57.

Anexos

Anexo 1. Anexo metodológico

Debido a que el trabajo de investigación tiene como objetivo analizar la influencia de la configuración social del agua en la morfología urbana de la ciudad, se plantea un modelo de análisis metodológico (Tabla) ajustado a tanto los aspectos teóricos como metodológicos necesarios para comprender la relación entre territorios hidrosociales y morfología urbana, así mismo, en este modelo se describen las escalas de estudio, el tipo de metodología empleada y los recursos necesarios para su desarrollo.

ESCALA TEÓRICA MACRO		ESCALA TEÓRICA MESO	ESCALA TEÓRICA MICRO				
CONCEPTOS GENERALES	VARIABLES	DIMENSIONES	SUBDIMENSIONES	INDICADOR	ESCALA URBANA/HÍDRICA	ENFOQUE	FUENTE
Ecología del Paisaje y Ecología Urbana (Forman 1995; Berque; Ortiz-Baéz, Cabrera-Barona y Bogaert 2021; Di bernardo 1996; Newell y Cousins 2015; Arabuetes, Villar y Hernández 2016) Geografías del Agua (Vertel et al. 2018; Díaz 2014) Territorio y Territorialidades (Tapia 2004; Vela- Almeida et al. 2020; Lefebvre 1991; Labour 1993; Harvey 1985; Swyngedouw 2004)	Territorios Hidrosociales (Ramirez 2017; Roca-Servat y Ocando 2019; Durán, Bayón y Bonilla 2020; González et al. 2006; Whatmore 2002; Harvey 1996; Latour 2004; Angell 2019; Pérez y Gasca 2019)	CICLO HIDROSOCIAL (Ramirez 2017; Bartoli 2018; Quiroz, Delgadillo y Durán 2012; Hommes y Boelens 2017; Larsimony y Grosso 2014)	Flujos del agua (Meerganz von Medeazza 2005; Lefebvre 1991; Labour 1993; Harvey 1985; Arahuetes, Villar y Hernández 2016)	Diagrama de Flujos del agua: entrada y salida del acceso al agua + tipo de fuente del agua + Alcance del servicio de agua potable y saneamiento	CIUDAD/RED DE RÍOS	Mixto	GAD Parroquial/Munic ipal + Censo de Población y Vivienda -INEC 2010
			Poder hidrico (Damonte-Valencia 2015, Meerganz von Medeazza 2005; Swyngedouw 2004; Harvey 1985; Larsimony y Grosso 2014)	Demanda de agua por industrias extractivas: relaciones de poder desiguales en torno al agua	CIUDAD/RED DE RÍOS	Cuantitativo	Fuentes secundarias, GAD Parroquial/Munic ipal Fuentes secundarias
		PAISAJES DEL AGUA (Meerganz von Medeazra 2005; Swyngedouw 2004; Harvey 1985; Larsimony y Grosso 2014; Roca- Servant y Ocando 2019)	Estructura (Composición + Configuración) (Ortiz- Báez, Cabrera-Barona y Bogaert 2021; Arroyo- Rodríguez, Moreno y Acedo 2017)	Composición del Paisaje Parches + Corredores + Matrices de los usos del agua. Configuración del Paisaje Diversidad, porcentaje y similitud del paisaje	BARRIO/RIO	Espacial	SIG y Fragstat e imágenes satelitales LandSat Datos de fuente primaria
		RELACIONES HIDROSOCIALES Roca-Servant y Ocando 2019; Budds y Hinojosa 2012)	Construcciones hidrosociales (Luguaña 2018; Budds y Hinojosa 2012)	Cartografia de prácticas materiales y culturales en riberas de ríos: modos de habitar y dinámicas urbanas y Relaciones hidrosociales: agua-minería, territorio, alimentación, resistencia, etc.	RIBERA/PERSONA	Mixto	Fuente Primaria
Urbanización extendida o planetaria (Brenner 2013; Correa-Cortes, D'Antona y Ojima	Morfologia Urbana (Marchi, Pappalardo y Codato 2017; Porto-Gonçalves 2017; Barbieri, Mont- Mór y Bilsborrow 2009; Bayón et al. 2020; Parrado- Rodríguez, Cevallos-Aráuz y Arias-Álvarez 2018)	MORFOGÉNESIS (Olviera 2018; Capel 2002; Chavez García 2018)	Vertebración urbana (Durán Diaz 2014; Calvino 1972; Prominsk 2012i; Laureano 2001)	Análisis morfogenético: evolución de la ciudad y transformaciones de que la relación río-ciudad ha sufrido con el tiempo	CIUDAD/RED DE RÍOS	Mixto	GAD de Orellana, Fuente primaria de historiadores
2020) Urbanización amazónica (Dal Asta, Amaral y Vieira 2017; Da Costa y Rosa 2017; Bayón 2019) Red Urbana Amazónica (Heredia 2014; Marchi et al. 2017; Porto-Gonçalves 2017; Erazo-Chalco 2019; Zarate 2019, Fearnside 2015; Cabrera-Barona et al. 2020)		FORMA URBANA (Mejia 2020; Capel 2002; Goerlich 2013; Serrano y Duran 2020)	Estructura Ribereña (Heredia 2014; Erazo- Chalco 2019; Zarate 2019, Cabrera-Barona et al. 2020)	Patrones de subdivisión de la tierra y constitución del hogar: fincas, campamentos, comunidades, etc.	BARRIO/RIO	Espacial	Imágenes satelitales
				Índice de compacidad: Fragmentación espacial (número de polígonos, área de polígono principal)	BARRIO/RIO	Cuantitativo	Imágenes satelitales + SIG
				Indicador demográfico (grado de urbanización + coeficiente GINI + Proporción de sexos)	CIUDAD/RED DE RÍOS	Cuantitativo	Censo de Población y vivienda - INEC 2010
				Características de edificación: número de pisos, materialidad, perfil urbano	RIBERA/VIVIENDA	Mixto	Datos de fuente primaria
		PAISAJES URBANOS (Bottaro, Latta y Sola 2014; Stahl 2015; Ortiz-Baéz, Cabrera-Barona y Bogaert 2021; Pinho 2012; Larsimony y Grosso 2014)	Estructura de los paisajes urbanos (Modos de ocupación) (Pelayo y Gazca 2019; Rodriguez Sánchez 2017; Swyngedouw 2004; Larsimony y Grosso 2014)	Patrón morfológico dominante (compacto, difuso, crecimiento de baja densidad, franja urbana, "salto de rana", archipiélagos)	BARRIO/RIO	Espacial	Información de paisajes hídricos

Los estudios geográficos trascienden la extensión natural del espacio y abordan la relación entre naturaleza, sociedad y territorio; que desde la función se basa en las redes sociales, las redes de convivencia y las redes de establecimiento humano; y desde lo cultural estudia las formas en las que el espacio se ve ocupado, modificado, construido y organizado por la sociedad (Vertel et al. 2018). En este contexto, las geografías del agua se enmarcan como el estudio de los elementos hídricos que condicionan tanto el crecimiento como la forma urbana y las dinámicas sociales y culturales (Durán Díaz 2014b, 51). En los estudios sobre las ciudades amazónicas y los procesos de urbanización es necesario reconocer esta asociación sinérgica entre los elementos de la naturaleza y la sociedad y los factores determinantes que hacen que esta relación configure paisajes urbanos del agua o hídricos urbanos que reproducen inequidades, injusticia espacial, fragmentación, segregación o marginalidad.

El presente anexo metodológico se compone de tres secciones: siendo la primera la introducción a este anexo; seguido de la segunda sección que aborda el estado del arte metodológico, el cual funciona como elemento de guía en el que se describen los estudios que comparten vínculos con los variables planteadas en el plan de tesis; finalmente, la tercera sección se comprende de las fichas metodológicas de los indicadores propuestos tanto para la variable de territorios hidrosociales como para la variable de morfológica urbana. Es necesario recalcar, que esta es la primera versión del anexo metodológico, por lo tanto, puede tener modificaciones a medida que el proceso de investigación avanza, siendo así el principal objetivo de este anexo el de orientar en la medición de las variables de la investigación.

Discusión Metodológica

En el presente estado del arte metodológico se abordarán primeramente los estudios relacionados con las metodologías que se aproximan a los territorios hidrosociales y sus componentes y a continuación se analiza los aportes metodológicos de las investigaciones en torno a la morfología urbana; finalmente se analizará a los autores que realizan un estudio conjunto y asociativo de los objetos de estudio. Cabe recalcar que se hará un énfasis en las investigaciones que se han realizado en contextos amazónicos, a pesar, de ello, se consideran otras metodologías que ofrecen abordajes metodológicos relevantes a pesar de su contexto.

Para el abordaje metodológico sobre la (re)configuración de los territorios hidrosociales, Angell (2019), propone un estudio desde el contexto el contexto amazónico y el paisaje interescalar dinámico, en el que se consideran desde las prácticas cotidianas de las comunidades ribereñas en red hasta las configuraciones territoriales; para ello, emplea un mapeo participativo en el que busca generar una mirada integral a la construcción del habitar. En otro estudio, Pérez and Zamora (2019), plantean analizar los datos cualitativos por medio de la teoría fundamentada, la cual implica una codificación de los datos mediante un programa de cómputo (*Atlas.ti*) que asocia códigos con fragmentos de texto recopilados y sistematizados posteriormente. Este proceso permite establecer patrones semánticos y clasificarlos lo cual se puede emplear en la fundamentación del análisis sin necesariamente implicar generalizaciones, aunque sí se pueden presentar sesgos debido tanto al número como al tipo de entrevistados (actores sociales o participantes). Las cinco dimensiones obtenidas en este estudio fueron:

- Entorno biofísico, el cual comprende unidades ecológicas determinadas por condiciones climáticas y geológicas y que determinan el tipo de vegetación y fauna existente.
- Prácticas de reproducción social, las cuales implican los procesos sociales, materiales y simbólicos presentes en las esferas económica y política.
- Prácticas culturales, que son aquellas que se relacionan a los saberes, valores y
 habilidades que han sido apropiados por quienes habitan en el territorio, y que se han
 construido de forma interdependiente con los componentes ecológicos, geográficos y
 sociales.
- Construcciones ideológicas, las cuales se comprenden por las ideas, discursos, creencias y valoraciones construidos como resultado de la relación agua-naturaleza.
- Mecanismos de apropiación y control, son aquellos que representan las formas de apropiación, control territorial y gestión de las externalidades en torno al agua.

En referencia a los flujos del agua, Arahuetes, Villar, and Hernández (2016), proponen desde el marco teórico otorgado por la Ecología Política Urbana y el enfoque del metabolismo urbano, un análisis de la evolución del ciclo hidrosocial por medio del recorrido y la evolución de los flujos hídricos en el sistema urbano. Para ello, se clasifica a los procesos ya sea en procesos de entrada, de consumo o de salida y se cuantifican los flujos hídricos en cada fase además de la descripción de los actores sociales implicados en el ciclo y la influencia que los mismos ejercen el total o conjunto del ciclo hidrosocial. Este estudio permite, es aplicado como un compendio para entender al ciclo hidrosocial por desde la visión de los flujos del agua.

García-Estrada and Hernández-Guerrero (2020), abordan el estudio del ciclo hidrosocial en las periferias de Morelia, México en la cuales se dan procesos de acelerada expansión urbana; mientras Budds (2012) plantea un estudio similar en el contexto del valle del río La Ligua en chile. Ambos estudios emplean un análisis documental de fuentes cualitativas como cuantitativas y datos primarios y secundarios. Así mismo, los instrumentos empleados fueron recorridos exploratorios y guiados, pláticas informales, entrevistas, encuestas, reportes fotográficos y observaciones directas para evidenciar el acceso al agua, los conflictos sociales en torno a esta y los cambios en el ciclo hidrosocial con repercusión la accesibilidad, la demanda, la evaluación y la asignación del agua. Para plasmar los resultados espacialmente se emplearon sistemas de información geográfica (SIG). En el estudio de García-Estrada and Hernández-Guerrero (2020), la encuesta se compuso de preguntas relacionadas a: la continuidad del servicio, cantidad de agua a la vivienda, costo económico en la administración del servicio, uso del agua, fuente de abastecimiento y consumo de agua. Estos ejemplos metodológicos de análisis documental pueden ser empleados en la presente investigación para analizar los actores sociales que mantienen control hídrico.

von Medeazza (2006), en su reflexión sobre la obra de Erik Swyngedouw sobre poder social y la urbanización del agua: flujos de poder, ejemplifica cómo se pueden construir discursos por parte de las elites que tienen el control hídrico y cómo estos discursos en muchos casos generan la pérdida de usos, simbolismos y el control popular del agua y a través de reflexiones sobre el agua aborda los discursos existentes en el contexto de la Directiva Marco del Agua (DMA). Este estudio ofrece un abordaje metodológico propicio para abordar los discursos hídricos presentes en el poder hídrico. De igual manera, Damonte Valencia (2015), metodológicamente aborda el poder hídrico desde la aplicación de un trabajo etnográfico en el que realiza un mapeo participativo en un periodo de dos meses complementado con herramientas como entrevistas y observaciones participantes para conectar los flujos de agua con los discursos de poder. Ambas investigaciones sirvieron como referente metodológico para abordar el poder hídrico en la construcción de territorios hidrosociales.

Al abordar los conflictos sociales en torno al agua, investigaciones como la de Bottaro, Latta, and Sola (2014) y Larsimont and Grosso Cepparo (2014), ofrecen aproximaciones metodológicas basadas tanto en la lectura crítica y reinterpretación de la bibliografía especializada como un estudio comparativo de discursos del Estado en torno al agua, la evolución de los debates hídricos. Bottaro, Latta, and Sola (2014), enfatizan en su metodología el abordaje a la politización como eje característico de los procesos de

organización y movilización en el contexto de los conflictos del agua, por ello, el estudio comparativo permite visualizar los efectos de esta productividad política en los modos de pensar el agua. En contraste el enfoque de Larsimont and Grosso Cepparo (2014), parte del enfoque metodológico de la lectura crítica evidencia las limitaciones generadas debido al debate actual existente sobre nociones como paisajes del agua y ciclo hidrosocial y recalca como las relaciones de poder en la gestión hídrica y los discursos tienden a transformar los problemas y conflictos por el agua en hecho "naturales". Estas dos investigaciones sirvieron para la construcción tanto teórica como metodológica más integral del indicador relacionado a los conflictos sociales del agua.

Para el análisis de metodologías relacionadas a los paisajes amazónicos, Luguaña (2018), propone un estudio sobre las metodologías de campo para la evaluación de los impactos del urbanismo en los paisajes de la Amazonía indígena ecuatoriana propone una etnocartografía para identificar los cambios sociales, ambientales y económicos de las poblaciones indígenas. El proceso metodológico se compone de tres etapas: a) la identificación, descripción y etnocartografía de las tipologías de paisaje encontradas en campo; b) la evaluación arquitectónica y la planificación para el reasentamiento; y c) la aplicación de encuestas semiestructuradas y entrevistas para recabar experiencias, datos demográficos, conflictos, dinámicas, apreciaciones, etc.

En relación a los paisajes del agua, Budds and Hinojosa (2012), plantean una metodología basada en un marco metodológico que emplea los paisajes del agua como unidad de medida para entender las conexiones entre agua y minería. Los "momentos" o conexiones se obtenidos de este estudio fueron: flujos del agua, derechos del agua, infraestructura hídrica, instituciones y discursos. En base a este estudio, se tomo la cartográfica etnográfica para identificar las relaciones hidrosociales de la cuenca del Alto y el Bajo Napo, en los que la unidad de análisis es el paisaje del agua (Budds and Hinojosa 2012).

Sobre las relaciones hidrosociales, Roca-Servat and Palacio Ocando (2019) diseñaron una estrategia investigativa etnográfica enteramente cualitativa empleando observación participante, entrevistas semiestructuradas, conversaciones informales y análisis documentales para demostrar la existencia de geografías alternativas que surgen a manera de resistencias y como resultado de las relaciones hidrosociales íntimamente conectadas al territorio y a la vida. Las relaciones planteadas fueron agrupadas en las siguientes categorías: agua-minería (colonización y despojo); agua-territorio (construcción histórica colectiva); agua-alimentación (supervivencia y cuidado); y agua-resistencia (búsqueda de autonomía). Este estudio

metodológico fue empleado como base para construir el abordaje de la subdimensión relacionada a las relaciones hidrosociales.

En relación a las métricas del paisaje empleadas para estudiar territorios altamente heterogéneos y con dinámicas híbridas complejas, Ortiz-Báez, Cabrera-Barona, and Bogaert (2021), plantean el uso de las siguientes métricas: porcentaje de paisaje (PLAND), densidad del parche (PD), área promedio (A_MN), índice del parche más largo (LPD) y la distancia euclidiana al vecino más cercano (ENN_MN). Estas métricas sumadas a una prueba de Kruskal-Wallis permiten observar las diferencias existentes entre gradientes y a lo largo de recortes territoriales. Para abordar los patrones y causas del cambio de uso de suelo, los cuales permiten evidenciar la diversidad y los efectos de la actividad antrópica en los procesos ecológicos desde una perspectiva multiescalar y longitudinal, la investigación de Arroyo-Rodríguez, Moreno, and Galán-Acedo (2017), plantea el uso de métricas relacionadas con la diversidad como lo son la heterogeneidad del paisaje. Estos estudios permiten establecer las métricas del paisaje a utilizar en el análisis de los mosaicos hídricos, urbanos e hidrosociales.

Para abordar metodológicamente la variable de morfología urbana, A. Cardoso et al. (2020), plantean una perspectiva tipológica aplicada a los estudios evolutivos que permite observar e interpretar la metamorfosis contemporánea de centros urbanos transformados por procesos de verticalización como es el caso de la mayoría de las ciudades amazónicas. Además, esta metodología se basa en los estudios de morfología urbana europea y morfogénesis de las ciudades. En este estudio se analizan los procesos de transformación de la parcelación al igual que la infraestructura urbana, los paisajes construidos tanto en tierra como en agua y el tejido urbano y la morfología de ciudad y sus actores. Este estudio y sus aportes se emplean para conocer la diversidad de formas de ocupación que se producen en los márgenes de los ríos y se asocian al agua.

La investigación de Mejía (2020), sobre morfología urbana y el proceso de urbanización en Ecuador plantea por medio del uso de imágenes satelitales nocturnas, en las cuales se representan datos concernientes a la magnitud y la intensidad de la luminosidad, un análisis evolutivo de las últimas décadas basado en la metodología establecida por el Grupo de Investigación sobre Energía, Territorio y Sociedad del departamento de geografía de la Universidad Autónoma de Barcelona. En este estudio las imágenes satelitales nocturnas fueron contrastadas con los datos existentes como lo son el mapa de cobertura y uso de suelo de Ecuador y la cartografía temática del Ecuador. Esta investigación, permite partir de un

mapa base de morfología urbana para la región amazónica e identificar la urbanización de las principales cuencas hidrográficas del Ecuador.

El planteamiento metodológico de Côrtes, De Oliveira D'Antona, and Ojima (2020), relacionado a los vectores morfológicos urbanos construye a través de dos indicadores demográficos un abordaje multidimensional del fenómeno urbano. El primer indicador se relaciona con el coeficiente de GINI, ya que permite observar las desigualdades e indicar las tendencias de aglomeración o dispersión poblacional. El segundo indicador, la proporción por sexos, el cual mide la composición poblacional al expresar el número de hombres por cada cien mujeres. Estos indicadores, permiten observar la producción urbana de áreas tanto céntricas como periféricas, o en este caso, ribereñas, desde un enfoque sensitivo a los procesos de urbanización, a la producción urbana feminista y equitativa. Estos indicadores fueron aplicados en cada paisaje urbano y en cada subregión analizada y permitieron observar la dispersión de la población a lo largo del tejido urbano, por ello, esta metodología será replicada para estudiar la forma suburbana en las morfologías urbanas amazónicas.

El estudio de Vian and Izquierdo (2021), sobre ríos y ciudades aborda el análisis de los usos de suelo en los espacios fluviales de áreas urbanas y plantean dos fases de trabajo: 1) una fase de tratamiento cartográfico en el que se emplean distintas coberturas territoriales y 2) una fase de análisis por medio de gráficas. En la construcción de la cartografía se utilizan tres mapas o capas principales: a) usos de suelo, b) áreas urbanas y c) espacio fluvial; y dos complementarias: a) las regiones biogeográficas y b) la red hidrográfica. La fase de análisis cumple con dos objetivos: 1) comparar los usos de suelo en el espacio fluvial con los usos de suelo presentes en el conjunto de áreas urbanas, 2) analizar los usos de suelo en función de la biogeografía y la temporalidad del flujo asociado al contexto amazónico.

El estudio realizado por Amaral et al. (2013); Pérez and Zamora (2019), sobre comunidades ribereñas como una forma de expresión socio espacial urbana en la Amazonía plantean la conformación de tipologías ribereñas que represente la estructura jerárquica entre las comunidades. Para este estudio se emplean técnicas estadísticas multivariadas para el reconocimiento de patrones homogéneos por medio de un análisis de clústeres y utilizando datos relacionados con la infraestructura, las redes de servicios y los usos de tierra. Estos estudios permiten aproximarse a las prácticas y la forma urbana que se dan en las riberas de la cuenca hidrosocial seleccionada.

La aplicación del índice de compacidad el cual permite observar la dispersión y concentración en los patrones morfológicos se realiza en el estudio investigativo de Cruz-Muñoz (2021) y permite además evidenciar el patrón morfológico dominante que generalmente es de tipo disperso, es decir, en el que a escala de ciudad se produce fragmentación social debido a las discontinuidad y fragmentación espacial. Adicionalmente, en este estudio se empleó fuentes estadísticas y geográficas para la construcción de dos tablas que permiten evidenciar la velocidad de la expansión urbana, la cual tiene incidencia directa en la construcción de la forma urbana. La primera tabla comprende un análisis evolutivo de la densidad poblacional la cual se emplea para construir el porcentaje de crecimiento poblacional y la tasa de expansión urbana, los cuales al complementarse con la demanda de suelo por habitante permiten observar el aumento o disminución de la velocidad de expansión.

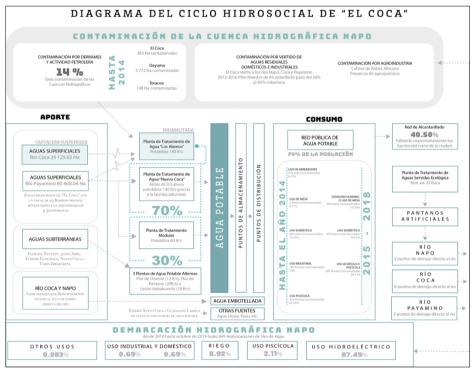
En relación a la relación asociativa entre los territorios hidrosociales y la morfología urbana, el estudio planteado por Durán Díaz (2014b), titulado vertebración urbana a partir de las geografías del agua, permite replicar su marco metodológico en la aplicación del presente estudio. Los parámetros empleados por Díaz son mayoritariamente cualitativos relacionados a la relación de las ciudades con el agua, la cual puede ser de distintos tipos como topológica, espacial, económica, paisajística, metabólica y/o cultural. Igualmente, la investigación plantea un análisis morfogenético de esta vertebración urbana, es decir, el origen y evolución de las ciudades y su relación (simbiótica preferiblemente) entre geografías del agua y el ser humano en el territorio.

Fichas metodológicas

Escala Macro

FICHA METODOLÓGICA #1				
Variable Independiente	Territorios Hidrosociales			
Dimensión	Ciclo Hidrosocial			
Subdimensión	Flujos del agua			
Nombre del Indicador	Diagrama de flujos del agua			

Definición y objetivo:


Un diagrama de los flujos hídricos describe los recorridos y la evolución de los flujos hídricos a través del sistema urbano, en este diagrama los principales procesos son aquellos en los cuales el agua se metaliza en entorno urbano, es decir, las entradas, los consumos y las salidas; para ello se cuantifica los flujos hídricos en cada fase, los autores implicados y su influencia sobre el conjunto del ciclo hidrosocial (Arahuetes, Villar, and Hernández 2016, 112)

Escala y área de estudio:

La escala de estudio es a nivel de la ciudad de Puerto Francisco de Orellana (El Coca) y el área de estudio según la información recolectada será hasta de nivel cantonal.

Medición y Metodología

La recolección de la información referente a los flujos de entrada, consumo y salida del agua se vinculan a su vez a los actores de control. Además, esta información se complementa para conseguir un ciclo hidrosocial en conjunto con la información obtenida en las relaciones sociales de poder por medio de la demanda de agua para las industrias extractivas.

Datos necesarios:

- Volumen de agua por tipo de consumo y Volumen de agua lluvia
- Empresas relacionadas a la distribución, tratamiento y embalse del agua
- Puntos de desagüe y Puntos de concesiones de fuentes de agua
- Diferenciación de las etapas del flujo hídrico (Entrada, Consumo, Salida)

Limitaciones

La información se encuentra dispersa y el ministerio del Ambiente, Agua y Transición Ecológica está actualizándose. La información para consolidar toda la cuenca cubre distintas divisiones políticas y por ello se encuentra en distinto tipo de disponibilidad y medición.

Unidad de medida	Diagrama de flujos y relaciones (volumen de agua)
Fuente de Datos	GAD Parroquial/Municipal; Ministerio del Ambiente, Agua y Transición Ecológica; Dirección de agua Potable y Alcantarillado Instituto Nacional de Estadísticas y Censos (INEC 2010)
Disponibilidad de datos	2010 / 2020
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

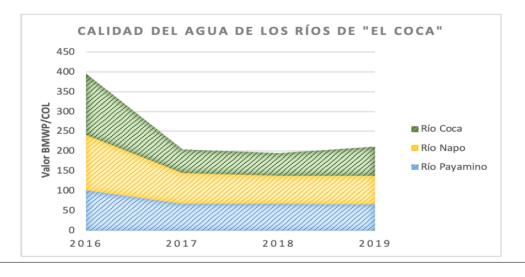
FICHA METODOLÓGICA #2		
Variable Independiente	Territorios Hidrosociales	
Dimensión	Ciclo Hidrosocial	
Subdimensión	Poder hídrico	
Nombre del Indicador	Demanda de agua por industrias extractivas	

Definición y objetivo:

Los actores sociales construyen, a partir de sus visiones, intereses y/o narrativas territoriales, los límites de un determinado territorio. Además, los actores pueden acumular poderes sin límites, o bien encontrarse desprovistos de cualquier posibilidad en la toma de desiciones.

Los discursos hídricos dominantes pueden ser descritos como "los discursos simbólicos, técnicos o expertos por medio de los cuales los conocimientos o políticas dominantes buscan subordinar saberes y manejos locales del agua" (Damonte Valencia 2015, 114). Igualmente, estos discursos combinados a la infraestructura hídrica puede causar despojo hídrico a favor de las elites.

Escala y área de estudio:


La escala de estudio es anivel de la ciudad de Puerto Francisco de Orellana (El Coca) y el área de estudio según la información recolectada será hasta de nivel cantonal.

Medición y Metodología

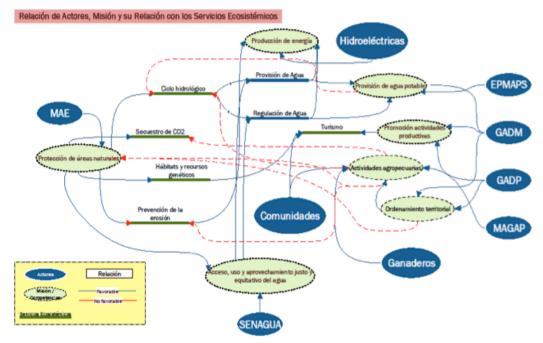
Los usos del agua en la Amazonía ecuatoriana se subdividen en uso doméstico, comercial e industrial. El consumo hídrico permite observar el modelo urbano instaurado o predominante, ya que por ejemplo un modelo urbano que implique el consumo de gran cantidad de suelo y por ello implica mayor consumo de suelo y mayor presencia de usos exteriores (Arahuetes, Villar, and Hernández 2016, 113).

CALIDAD DEL AGUA DE LOS RÍOS DE "EL COCA"					
Codif	icación	Valor BMWP/COL		Calidad	
Buena		101 o mayor	Aguas limpias a muy li	mpias	
Aceptable		61-100	Evidencia de efectos de	e contaminación	
Dudosa		35-60	Aguas moderadamente	contaminadas	
Crítica		16-35	Aguas muy contaminad	las	
Muy Crítica		Menor a 15	Aguas severamente con	ntaminadas	
Subcuencas	2016	2017	2018	2019	Variación 2016-2019
Río Payamino	101	68	67	66	-35
Río Napo	140	77	71	72	-68
Río Coca	155	60	57	73	-82

Fuente: Recuperado de PDyOT Orellana, 2019-2023, 2019

Datos necesarios:

- Volúmenes suministrados y facturados en las cuencas del río Napo
- Volumen doméstico facturado
- · Volumen de agua
- Número de habitantes empadronados


Procedencia del agua potable

Conjugando este indicador con el indicador de Diagrama de los flujos del Agua se consigue complementar al mismo con un diagrama de actores localizando a los actores sociales que dominan la infraestructura hídrica (García-Estrada and Hernández-Guerrero 2020, 282).

Datos necesarios:

Infraestructura hídrica existente en la red hidrosocial y actor que controla dicha infraestructura (Arahuetes, Villar, and Hernández 2016).

Modelo de Diagrama de Actores en el acceso al agua:

Fuente: (Programa de las Naciones Unidas para el Medio Ambiente and Escuela Politécnica Nacional 2018)

Limitaciones

Evitar que otros actores sociales que gozan de poder hídrico sean descartados debido a la falta de infraestructura hídrica. Considerar otros saberes y otros actores los cuales son relevantes en contextos amazónicos.

Unidad de medida	Puntos georeferenciados	
Fuente de Datos	Gad Parroquial/Municipal	
Disponibilidad de datos	INAMHI	
Fecha de última edición	16/01/2022	
Elaborado por	Yosselyn Anabel Sánchez Rojas	
Profesor	Dr. Gustavo Durán	

183

FICHA METODOLÓGICA #3		
Variable Dependiente	Morfología Urbana	
Dimensión	Morfogénesis	
Subdimensión	Vertebración urbana	
Nombre del Indicador	Análisis Morfogenético	

Definición y objetivo:

"La vertebración territorial y urbana habla de estructuras implícitas en el territorio, que lo ordenan y dan sentido a los asentamientos y estructuras posteriores, pero que no han sido diseñados e insertados en el territorio para interconectarlo. A diferencia de un articulador, el vertebrador territorial existe antes de la ocupación, aunque ambos tengan la cualidad de cohesionar o fragmentar un territorio. Por ello, para comprender el agua como un elemento vertebrador, hay que estudiar la morfogénesis de la ciudad" (Durán Díaz 2014a)

Escala y área de estudio:

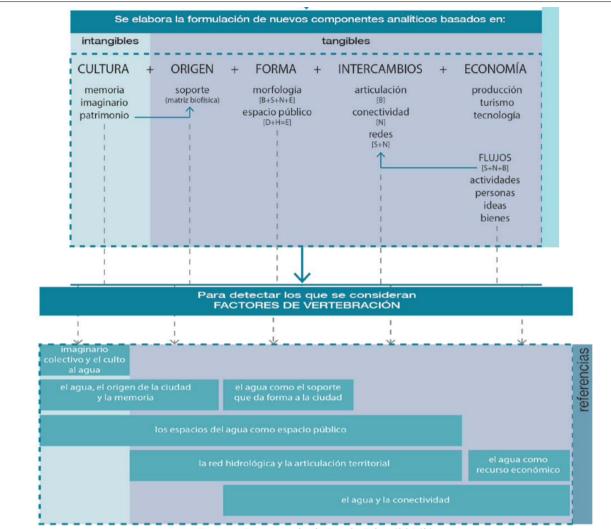
La escala de estudio es a nivel de la ciudad de Puerto Francisco de Orellana (El Coca)

Medición y Metodología

Se emplean entrevistas para construir el análisis morfogenético y un registro fotográfico. Factores a considerar:

1. "Proyecto MapBiomas Amazonía- Colección [collection-3.0] de la Serie Anual de Mapas de Cobertura y Uso del Suelo de la Amazonía, adquirido en [12 de marzo de 2022] a través del enlace: [https://amazonia.mapbiomas.org/mapas-de-la-coleccion]" Como fuente de mapoteca desdelos años 1985 hasta el año 2020.

Conceptos Teóricos aplicados:


- Tangibles: Origen, Forma, Intercambios y Flujos, y Economía.
- Intangibles: cultura e Identidad (memoria, imaginarios, patrimonio, subjetividades)

Factores de Vertebración Urbana:

- Imaginario colectivo y el culto al agua
- El agua, el origen de la ciudad y la memoria
- El agua como soporte que da forma ala ciudad
- Los espacios del agua como espacio público
- La red hidrológica y la articulación territorial
- El agua como recurso económico
- El agua y la conectividad

Atributos de Vertebración:

- 1- Valor Paisajistico (escenarios)
- 2- Procesos Metabolicos (situaciones)

Fuente: Recuperado de Durán Díaz (2014b)

Superposición de capas e Información Cartográfica: (Proyecto MapBiomas Amazonía 2022)

"Proyecto MapBiomas Amazonía - es una iniciativa multinstitucional de RAISG para generar mapas anuales de cobertura y uso del suelo a partir de procesos de clasificación automatizada de imágenes satelitales. La descripción completa del proyecto se encuentra

en http://amazonia.mapbiomas.org"

1. Reclasificación de las coberturas

Codigo	Coberturas Nivel 2	Coberturas Nivel 1	Código de Reclasificación
3	Formación Forestal		
4	Formación Sabánica	D	
5	Manglar	Bosque	1
6	Bosque Inundable		
10	Formación Natural no Forestal		
11	Formación Natural no Forestal Inundable	Formación Natural no	
12	Formación Campestre o Herbazal		2
13	Otra Formación Natural no Forestal	Forestal	
29	Afloramiento Rocoso		
33	Rio, Lago u Océano	C 1- A	2
34	Glaciar	Cuerpo de Agua	3
24	Uso Agropecuario	Uso Agropecuario	4
24	Infraestructura Urbana		
25	Otra Área sin Vegetación	Uso Urbano o antrópico	5
30	Minería	•	
27	Sin Información	Sin Información	6

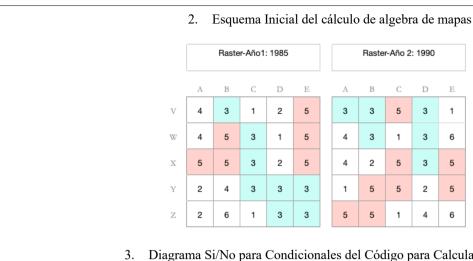
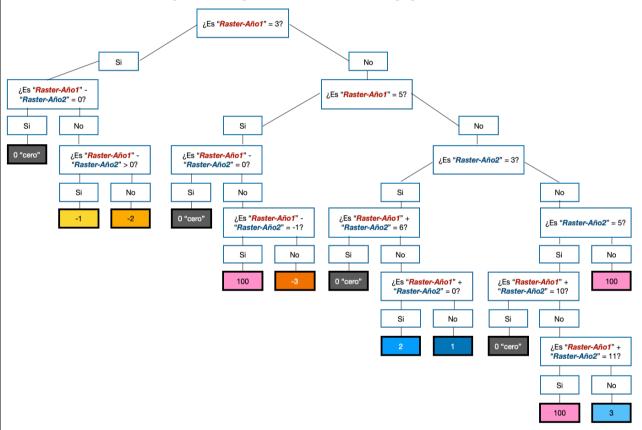



Diagrama Si/No para Condicionales del Código para Calculadora Ráster

Fuente: Elaborado por la autora con información del trabajo de campo.

4. Código para Calculadora Ráster

"ORE-1990-R" > 0), (-1), (-2))))), (Con(("ORE-1985-R" == 5), (Con(("ORE-1985-R" - "ORE-1990-R" == 5))))))))))))))))))))))))0), (0), (Con(("ORE-1985-R" - "ORE-1990-R" == -1), (100), (-3))))), (Con(("ORE-1990-R" == -1), (100), (-3))))))3), (Con(("ORE-1985-R" + "ORE-1990-R" == 6), (0), (Con(("ORE-1985-R" + "ORE-1990-R" >= 6), (0), (Con(("ORE-1985-R" + "ORE-1990-R" + "ORE-1990-R" + (Con(("ORE-1985-R" + "ORE-1990-R" + (Con(("ORE-1985-R" + "ORE-1990-R" + (Con(("ORE-1985-R" + "ORE-1990-R" + (Con(("ORE-1985-R" + (Con(("10),(0),(Con(("ORE-1985-R" + "ORE-1990-R" == 11),(100),(3))))),(100))))))

Donde:

"ORE-1985-R" = Input Raster del Año 1 "ORE-1990-R" = Input Raster del Año 2 **Con** = Condición que para la calculadora raster de ArcGis sigue el siguiente formato: Con (condición, verdadero, falso)

5. Interpretación de los resultado	S
------------------------------------	---

5.	Interpretación de los resultados		
Color	Valor	Equivalencia	Descripción
	3	Ganancia de suelo urbano sobre otro usos	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	2	Ganancia de uso hídrico sobre suelo urbano	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	1	Ganancia de suelo hídrico sobre suelo de uso natural y forestal	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	0	Sin cambios	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	-1	Perdida de suelo hídrico frente a suelo natural y/o forestal	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	-2	Pérdida de suelo hídrico frente asuelo urbano	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	-3	Pérdic¡da de suelo urbano frente a otros usos	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.
	100	Otros usos no urbanos o hídricos	Este valor representa que existió en el periodo correspondiente un cambio de otros usos de suelo (bosque, formación natural no boscosa, cuerpos de agua y uso agrícola) hacia el uso correspondiente a suelo urbano o antrópico, es decir, infraestructura urbana, áreas sin vegetación y/o minería. Esto se considera una ganancia de suelo urbano o un aumento en el mismo.

Limitaciones

Puesto que un análisis morfogenético a profundidad se requiere de información cartográfica de distintos años, así que este será un análisis morfogenético parcial para ofrecer una visión amplia de cambios que estructuran la configuración actual de los paisajes actuales.

Unidad de medida	Atlas cartográfico
Fuente de Datos	GAD de Orellana, historiadores
Disponibilidad de datos	Entrevistas
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

FICHA METODOLÓGICA #4		
Variable Dependiente	Morfología Urbana	
Dimensión	Forma Urbana	
Subdimensión	Estructura Ribereña	
Nombre del Indicador	Indicador demográfico	

Definición y objetivo:

Según Côrtes, De Oliveira D'Antona, and Ojima (2020), este indicador representa la especialidad de la urbanización como un fenómeno demográfico.

Escala y área de estudio:

La escala de estudio es anivel de la ciudad de Puerto Francisco de Orellana (El Coca)

Medición y Metodología

Se emplea el coeficiente de GINI para la distribución espacial de la desigualdad y para indicar la tendencia de la aglomeración o la dispersión poblacional en el espacio de análisis.

-Porcentajes en rango de 0 a 1 en el cual 1 corresponde a equidad completa y 0 corresponde a total inequidad.

Adicionalmente, se emplea la proporción de sexos la cual mide la oposición poblacional que se expresa en el número de hombre por 100 mujeres, el cual se aplica para entender cómo los procesos femeninos están conectados a los procesos de urbanización.

Limitaciones

Los datos se encuentran desactualizados debido a que la información del censo de población y vivienda corresponde al año 2010.

Unidad de medida	Porcentajes en rango de 0 a 1
Fuente de Datos	Censo de Población y vivienda (INEC 2010)
Disponibilidad de datos	2010
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

Escala Meso

FICHA METODOLÓGICA #5		
Variable Independiente	Territorios Hidrosociales	
Dimensión de análisis	Paisajes del Agua	
Subdimensión:	Estructura de los paisajes del agua	
Nombre del Indicador:	Mosaicos del agua (parche, borde, corredor y matriz)	
Definición y objetivo:		

Mosaico es la estructura que se encuentra en los paisajes y se componen de parches, bordes, corredores y matrices. Un parche es la unidad espacial con características homogéneas. Los corredores son elementos lineales que contribuyen a la conectividad del paisaje. Las matrices son el tejido que conecta los elementos del paisaje. En la matriz se observa patrones espaciales según los procesos ecológicos (Ortiz-Báez, Cabrera-Barona, and Bogaert 2021). El conjunto de parches constituye una matriz y el conjunto de corredores forman una red. El borde es un elemento que refleja interacciones débiles o nulas, es una frontera común entre elementos de diferente composición y la estructura del paisaje (Morláns). El objetivo de este indicador es saber cómo funciona el paisaje, como se agrupan sus elementos y cuanta heterogeneidad presenta el paisaje a partir de un análisis de sus componentes y las métricas del paisaje.

Escala y área de estudio:

Escala meso a nivel de barrios de Puerto Francisco de Orellana (El Coca) y a lo largo de los tres ríos.

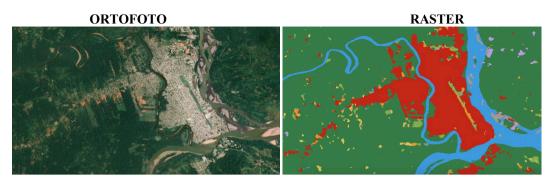
Eje 1: Río Payamino

Eje 2: Río Napo (malecón)

Eje 3: Río Coca

Las áreas de estudio son las unidades territoriales seleccionadas a lo largo de los tres ríos para analizar la función de los ríos y el rol que cumplen, ya sea de integradores o límites en la producción urbana.

Medición y Metodología


Descripción metodológica:

Definición de los transectos de estudio. Cada transecto se selecciona siguiendo los ejes de los ríos con centro
en la ciudad de Puerto Francisco de Orellana. El río Napo hacia el este y los ríos Payamino y Coca hacia el
norte. La distribución de las muestras aleatorias corresponderá a

- 2. Identificación de los usos de suelo y coberturas y verificación con la información encontrada en el trabajo de campo.
- 3. Construcción de la imagen raster empleando el programa de SIG ArcGis.

ANÁLISIS DE GRADIENTES

Proceso:

- 1. Identificación de los usos de suelo
- 2. Selección de las métricas del paisaje
- 3. Evaluación de las métricas del paisaje

Empleando las siguientes métricas del paisaje:

- 1. Porcentaje de paisaje (PLAND)
- 2. Índice de diversidad de Shannon (SHDI)
- 3. Densidad del parche (PD)
- 4. Área Promedio (A-MN)
- 5. Índice de Parche más largo (LPD)
- 6. Índice de contraste del borde (ECON)

Nombre de las métricas del paisaje	Fórmula	Notas
Porcentaje de paisaje (PLAND)	$PLAND = P_i = \frac{\sum_{j=1}^{n} a_{ij}}{A} $ (100)	P_i = proporción del paisaje ocupado por un tipo de parche (clase) a_{ij} = área del parche ij. (m2) A= área total del paisaje (m2)
Densidad de parche (PD)	$PD = \frac{n_i}{A}(10.000)(100)$	n_i =número de parches en el paisaje del mismo tipo. A= área total del paisaje (m2)
Área promedio (A_MN)	$A_MN = \frac{\sum_{j=1}^{n} a_{ij}}{n_i} (\frac{1}{10.000})$	a_{ij} = área del parche ij. (m2) n_i =número de parches en el paisaje del mismo tipo.
Índice de parche mas largo (LPD)	$LPI = \frac{\max(a_{ij})}{A} (100)$	 a_{ij} = área del parche ij. (m2) A= área total del paisaje (m2)
Índice de similitud del paisaje (LSIM)	$LSIM = P_i = \frac{\sum_{j=1}^{n} a_{ij}}{A} $ (100)	P_i = proporción del paisaje ocupado por un tipo de parche (clase) a_{ij} = área del parche ij. (m2) A= área total del paisaje (m2)

Recursos necesarios:

-Imágenes satelitales, Fragstats, y QGis(A. Cardoso et al. 2020)

Limitaciones

Se debe prestar especial atención a la elaboración de ponderaciones que reflejen cualquier conocimiento y comprensión empíricos y teóricos del fenómeno en cuestión. Si el esquema de ponderación no representa con precisión el fenómeno que se investiga, los resultados serán falsos.

Unidad de medida	Parches, Corredores, Matrices y Mosaicos
Fuente de Datos	Mapa base satelital de QGis
Disponibilidad de datos	SIG
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

190

FICHA METODOLÓGICA #6	
Variable Dependiente	Morfología Urbana
Dimensión	Forma Urbana
Subdimensión	Estructura Suburbana
Nombre del Indicador	Patrones de subdivisión de la tierra y constitución del hogar

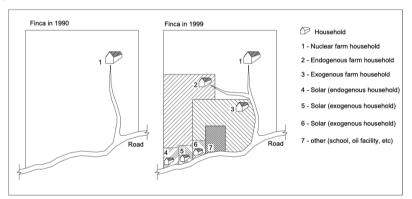
Definición

Los patrones de subdivisión de la tierra y la constitución del hogar permiten observar como varían las transformación de la estructura suburbana, sufren procesos de porto-urbanización (Barbieri, Monte-Mór, and Bilsborrow 2009; Cruz-Muñoz 2021; Damonte Valencia 2015).

Escala v área de estudio

Escala meso a nivel de barrios de Puerto Francisco de Orellana (El Coca) y a lo largo de los tres ríos.

Eje 1: Río Payamino


Eje 2: Río Napo (malecón)

Eje 3: Río Coca

Medición y Metodología

Diagrama de evolución de los patrones de subdivisión de la tierra y la constitución del hogar en distintos años: 1990; 1999; 2010; 2021

Patrones de subdivisión de la tierra y constitución del hogar en la Amazonia Norte ecuatoriana (Barbieri, Monte-Mór, and Bilsborrow 2009).

Fuente: Barbieri, Monte-Mór, and Bilsborrow (2009)

Limitaciones

Conseguir la información concerniente a los años anteriores a 2000.

Unidad de medida	Área de la unidad mínima de subdivisión
Fuente de Datos	Gad Parroquial/Municipal, SIG tierras, bases de catastro
Disponibilidad de datos	1990, 1999, 2021
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

FICHA METODOLÓGICA #7	
Variable Dependiente	Morfología Urbana
Dimensión	Forma Urbana
Subdimensión	Estructura Suburbana
Nombre del Indicador	Índice de compacidad

Definición y objetivo:

"El índice de compacidad se define a través de la morfología de los polígonos urbanos y su grado de regularidad geométrica, entendiendo que la figura más compacta es el círculo, dada su máxima área posible en función de su perímetro." (Cruz-Muñoz 2021)

Escala y área de estudio:

Escala meso a nivel de barrios de Puerto Francisco de Orellana (El Coca) y a lo largo de los tres ríos.

Eje 1: Río Payamino

Eje 2: Río Napo (malecón)

Eje 3: Río Coca

Las áreas de estudio son las unidades territoriales seleccionadas a lo largo de los tres ríos.

Medición y Metodología

La fórmula para la estimación del índice se expresa de la siguiente forma:

$$IC = \frac{\sum_{i} 2\pi \sqrt{s_i \div \pi} / p_i}{N^2}$$

Donde:

- IC es el índice de compacidad,
- p_i es el perímetro del polígono i,
- s; es el área del polígono i
- N es el total de polígonos

Limitaciones

Hay que considerar que debido a que se considera la cantidad de polígonos que forman los centros urbanos, por lo que, a mayor cantidad de polígonos, disminuye el índice de compacidad.

Unidad de medida	0 a 1; donde 1 representa una circunferencia y, por ende, la máxima compacidad posible; y 0, la completa fragmentación e irregularidad geométrica de los polígonos.
Fuente de Datos	SIG
Disponibilidad de datos	2020
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

192

FICHA METODOLÓGICA #8	
Variable Dependiente	Morfología Urbana
Dimensión	Paisajes Urbanos
Subdimensión	Estructura de los paisajes urbanos
Nombre del Indicador	Patrón morfológico dominante

Definición y objetivo:

El estudio de los patrones morfológicos dominantes en la Amazonía consisten en una categorización de las forma urbana.

Escala y área de estudio:

Escala meso a nivel de barrios de Puerto Francisco de Orellana (El Coca) y a lo largo de los tres ríos.

Eje 1: Río Payamino

Eje 2: Río Napo (malecón)

Eje 3: Río Coca

Las áreas de estudio son las unidades territoriales seleccionadas a lo largo de los tres ríos.

Medición y Metodología

Empleando el estudio de configuración de los paisajes hídricos se analiza cuál es el patrón dominante para establecer las tipologías ribereñas

PATRONES URBANOS DE BORDE EN "EL COCA"

Limitaciones

Depende de la información recolectada para el análisis morfogenético.

Unidad de medida	Mapas
Fuente de Datos	Gad Parroquial/Municipal; imágenes satelitales, ortofotos.
Disponibilidad de datos	Por revisar
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

Escala Micro

FICHA METODOLÓGICA #9	
Variable Independiente	Territorios Hidrosociales
Dimensión	Relaciones Hidrosociales
Subdimensión	Construcciones hidrosociales
Nombre del Indicador	Cartografía de prácticas materiales y culturales en riberas de ríos

Definición y objetivo

Las relaciones hidrosociales son las "formas espaciales, materiales y simbólicas que adquiere el agua para las personas" (Roca-Servat and Palacio Ocando 2019, 118); también se pueden entender como las múltiples significaciones o valoraciones que reflejan la relación ser humano-naturaleza.

Reflejan la diversidad de formas de ocupación asociadas al río y ofrecen una visión de la morfología urbana al mostrar cómo los actores sociales se relacionan en la producción urbana.

El agua como generador de relaciones, permite visualizar las construcciones hidrosociales, para ello, primero se necesita conocer las prácticas tanto naturales como culturales y sociales que surgen alrededor del agua, de manera que se pueda reflejar en una red de relaciones integradas.

Las prácticas materiales, culturales y sociales alrededor del agua permiten comprender la forma en que los grupos humanos se posicionan de forma diferente a lo largo de la historia.

Escala y área de estudio:

Escala micro a nivel de vivienda/individuos de Puerto Francisco de Orellana (El Coca) y a lo largo de los tres ríos.

Eje 1: Río Payamino

Eje 2: Río Napo (malecón)

Eje 3: Río Coca

Se recorre los tres ejes en su extensión y se analizan sus riberas

Medición y Metodología

Mediante cartografía etnográfica

- Tipologías de naturalezas del agua y formas de interpretación con el entorno.
- Como la primera parte del Método etnográfico, se identifican las relaciones hidrosociales existentes en base a las prácticas materiales, culturales y sociales.

El método llamado transectos fluviales (Colectivo de Geografía Crítica del Ecuador 2018, 8) consta de los siguientes pasos:

- 1. Escoger la ruta fluvial para realizar el recorrido cotidiano con grupos de personas
- 2. Dibujo del espacio del río y dibujar sobre estos las actividades que se realizan y lo que generan (contaminación, violencia, acoso, serenidad, comercio, contacto con la naturaleza, etc.)

Método etnográfico, por medio de la observación participante, entrevistas semiestructuradas, conversaciones informales, al igual que un análisis documental y entrevistas a profundidad realizadas a actores, organizaciones sociales y estatales, lideres comunitarios.

Por medio de un registro fotográfico se complementa a los paisajes hídricos con la forma urbana construida en las riberas de los ríos.

Río Payamino

AGUA-TURISMO

Río Napo

Río Coca

Limitaciones

La información proveniente de fuentes secundarias debe ser constatada en campo

Unidad de medida	Puntos georeferenciados
Fuente de Datos	Gad Parroquial/Municipal; fuentes secundarias; entrevistas semi-estructuradas.

Disponibilidad de datos	En campo
Fecha de última edición	16/01/2022
Elaborado por	Yosselyn Anabel Sánchez Rojas
Profesor	Dr. Gustavo Durán

FICHA METODOLÓGICA #10	
Variable Dependiente	Morfología Urbana
Dimensión	Forma Urbana
Subdimensión	Estructura Ribereña
Nombre del Indicador	Características de edificación

Definición y objetivo:

Una característica de la edificación en la que se encuentran a su vez diversos factores es el perfil urbano el cual a su vez se relaciona con el paisaje. Un perfil es un contorno aparente que permite destacar aspectos como la morfología, apropiación del suelo, y las tipologías que son esenciales para la planificación urbana (Bosch Estrada 2004). Este indicador cumple con el objetivo de categorizar las características predominantes de la edificación ribereña para establecer contraste entre la producción urbana ribereña y la producción urbana céntrica o a lo largo de la infraestructura vial.

"El estudio de la distribución de la población en base a su densidad a lo largo del territorio es una pieza clave para poder abordar la cuestión de la difusión espacial en el modelo metropolitano, del mismo modo que nos facilita una mejor lectura para entender ciertos procesos morfoestructurales asociados." (C.H. Rodríguez and Neves 2015, 1)

Escala v área de estudio:

Escala micro a nivel de vivienda/individuos de Puerto Francisco de Orellana (El Coca) y a lo largo de los tres ríos.

Eje 1: Río Payamino

Eje 2: Río Napo (malecón)

Eie 3: Río Coca

Se recorre los tres ejes en su extensión y se analizan sus riberas

Medición y Metodología

Para lograr representar al perfil urbano primeramente es necesario definir la escala de análisis en este caso es la escala micro que se contruye hasta la escala de ciudad. Generando un análisis continuo de los ejes fluviales y a su vez permite detectar diversas tipologías constructivas o de ocupación urbana.

Limitaciones

La selección de zonas aleatorias dentro de la red hidrosocial.

Unidad de medida	Estudio cualitativo						
Fuente de Datos	En campo						
Disponibilidad de datos	2021						
Fecha de última edición	16/01/2022						
Elaborado por	Yosselyn Anabel Sánchez Rojas						
Profesor	Dr. Gustavo Durán						

Instrumentos

Para el desarrollo del trabajo de campo se han construido los siguientes instrumentos: diario de investigación, hoja de observación, entrevistas semiestructuradas para autoridades de instituciones y entrevistas semiestructuradas para residentes

HOJA DE OBSERVACIÓN Territorios Hidrosociales y Morfología Urbana							
	le Orellana (El Coca)						
	022						
Investigadora: Yosselyn Anabel Sánchez	Fecha:						
Rojas							
J							
TTI • • / 1							
Ubicación de manzana							
*Insertar localización punto de inicio							
*							
*Ingortan logalización munto final							
*Insertar localización punto final							
Número de viviendas:	Número de lotes baldíos:						
Levantamiento de perfil urbano: *Fotografías	con código de manzana						
Devantamiento de perm dibano. 1 otograjus	con comgo de manzana						
Notas o comentarios:							

ENTREVISTA SEMIESTRUCTURADA - INSTITUCIONES

Territorios Hidrosociales y Morfología Urbana Puerto Francisco de Orellana (El Coca) 2022

Datos del entrevistado/a
Institución:
Nombre del directivo:
Cargo que desempeña:

Objetivo de la entrevista

- Conocer los proyectos y planes urbanos para las riberas de los ríos, los riesgos asociados a los mismos, así como posibles soluciones a futuro.
- Identificar cómo se distribuye el agua en la ciudad
- Reconocer el rol de los ríos urbanos y como estos son elementos de la planificación urbana

Preguntas para guíar la entrevista:

Sobre Ríos Urbanos:

1. ¿Cuentan actualmente con algún proyecto urbano para las riberas de los ríos?

- 2. ¿Cuál es el rol de los ríos urbanos que buscan generar desde la institución?
- 3. ¿Cuáles son los desafíos que encuentran al momento de planificar en espacio ribereños?
- 4. ¿A qué problemáticas se han enfrentado al intervenir en zonas ribereñas?
- 5. ¿Qué medidas están tomando como institución para la recuperación y mantenimiento de los ríos?
- 6. ¿Quién considera como el actor más importante y confiable para la recuperación y mantenimiento de los ríos?
- 7. ¿Qué potencialidades han sido identificadas por parte de la institución para la recuperación de los ríos?

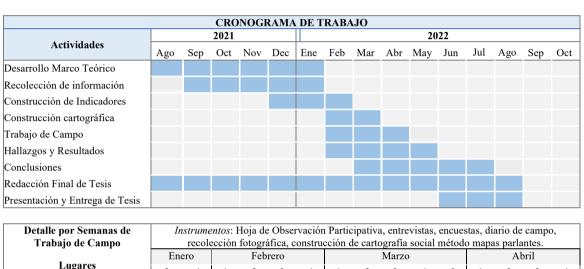
Sobre el Agua:

- 1. ¿Qué nos podría comentar sobre el alcance de la red de agua pública de la ciudad?
- 2. ¿Qué porcentaje de la población no cuenta con el servicio y cuál es la principal razón?
- 3. ¿De qué manera se lleva a cabo el ciclo del agua en la ciudad?
- 4. ¿Cuáles son los puntos de tratamiento, de desagüe, etc.?
- 5. ¿Quién es el mayor consumidor de agua de la ciudad?

		ΓURADA Y ENCUES		IDENTES						
Territorios Hidrosociales y Morfología Urbana Puerto Francisco de Orellana (El Coca)										
1	ucito Francis	2022	ca)							
Ubicación*Insertar localización	1									
Datos demográficos										
Joven										
Adulto/a										
Adulto/a mayor										
Género ☐ Mujer										
Hombre										
Otro										
1. ¿Cuánto tiempo lleva vi	viendo en el	barrio? Respuesta nun	nérica en año	OS .						
2. Sobre la escasez del agu					l					
hogar no hayan contado	con una can	tidad de agua suficient	e para consu	mo?						
No, siempre contame		suficiente								
Sí, en al menos una c										
☐ No hay agua potable	nunca									
2 Ti 1 i i i										
3. Tiene los siguientes serv			T 1 C /	T ,						
Luz Agua Alo Potable	cantarillado	Recolección Basura	Telefonía	Internet						
Sí										
No										
No	Considera q	ue el estado del río (río	s) en los últi	mos 5 años:						
No 4. Sobre los ríos:	Considera qı	ue el estado del río (río	s) en los últi	mos 5 años:						
4. Sobre los ríos: Ha mejorado	Considera qı	ue el estado del río (río	s) en los últi	mos 5 años:						
No 4. Sobre los ríos:	·	ue el estado del río (río	s) en los últi	mos 5 años:						
A. Sobre los ríos: Ha mejorado Ha empeorado	·	ue el estado del río (río	s) en los últi	mos 5 años:						
A. Sobre los ríos: Ha mejorado Ha empeorado Se ha mantenido igu No lo sabe	al									
A. Sobre los ríos: ☐ Ha mejorado ☐ Ha empeorado ☐ Se ha mantenido igu ☐ No lo sabe 5. ¿Cuál es la actividad que se la activ	al				ción					
4. Sobre los ríos: Ha mejorado Ha empeorado Se ha mantenido igu No lo sabe 5. ¿Cuál es la actividad q Caminar o pasear	al				ción					
A. Sobre los ríos: ☐ Ha mejorado ☐ Ha empeorado ☐ Se ha mantenido igu ☐ No lo sabe 5. ¿Cuál es la actividad que se la activ	al ue más realiz	za en los márgenes del			ción					

☐ Baño ☐ Lavar ropa ☐ Otra:	
6. ¿A usted le afecta la contaminación del Río? ¿Por qué? Sí No ¿Por qué?	
7. ¿Quién considera que es la persona o institución responsable del estado actual del río? El municipio Las personas que viven más arriba Las personas que viven en este barrio Otra:	
Espacio para comentarios de la entrevista si se considera por parte de la persona encuestadora Espacio abierto no obligatorio	
Muchas Gracias por su Colaboración	

RECORRIDO DOCUMENTADO Territorios Hidrosociales y Morfología Urbana Puerto Francisco de Orellana (El Coca) 2022						
Ubicación*Insertar localización	LL					
Recorrido*Insertar ruta Tiempo *En minutos						
Comentarios* Descripción detallada de la actividad	Fotografías					
Comentarios * <i>Descripción detallada de la actividad</i>	Fotografías					
Comentarios * <i>Descripción detallada de la actividad</i>	Fotografías					
Comentarios * <i>Descripción detallada de la actividad</i>	Fotografías					


Plan de trabajo de campo

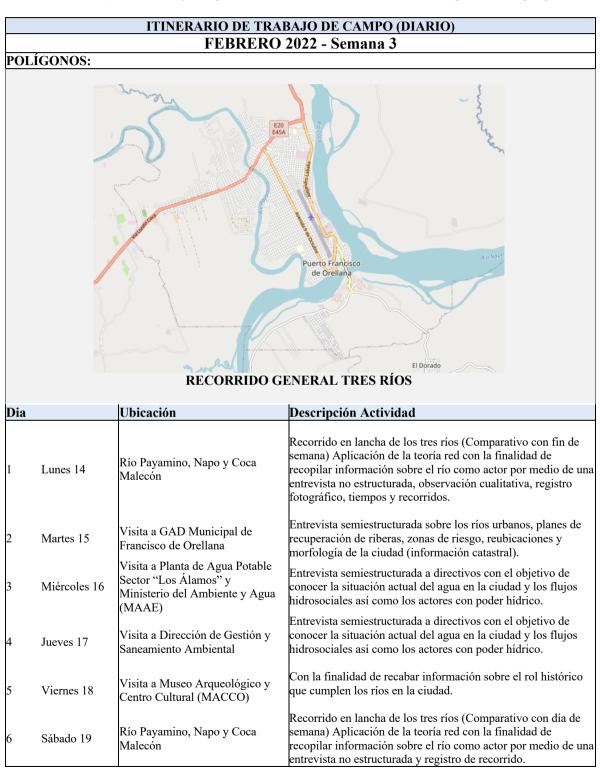
El siguiente plan de trabajo de campo se compone de tres secciones: el cronograma detallado de trabajo en el que se describen las principales actividades consideradas en la presente investigación así como los meses destinado a cada actividad; el itinerario que describe las actividades diarias a realizarse así como los polígonos a visitar y los recorridos planificados; y

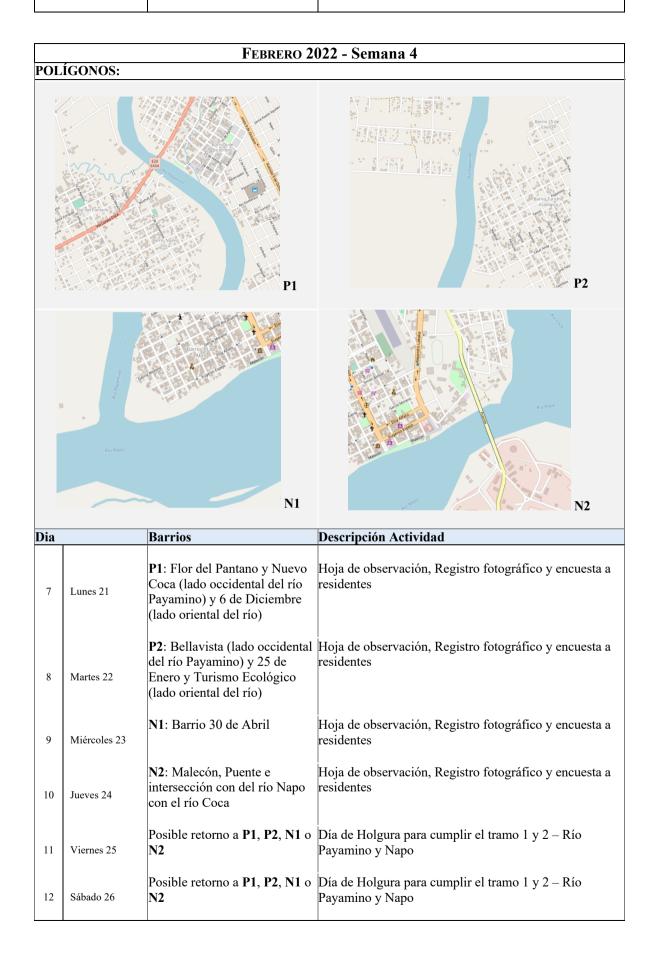
el presupuesto detallado en el que constan los rubros correspondientes a transporte, alimentación, hospedaje, adquisición, procesamiento o análisis de información y material fungible o de oficina requerido para el desarrollo y. cumplimiento del plan de investigación.

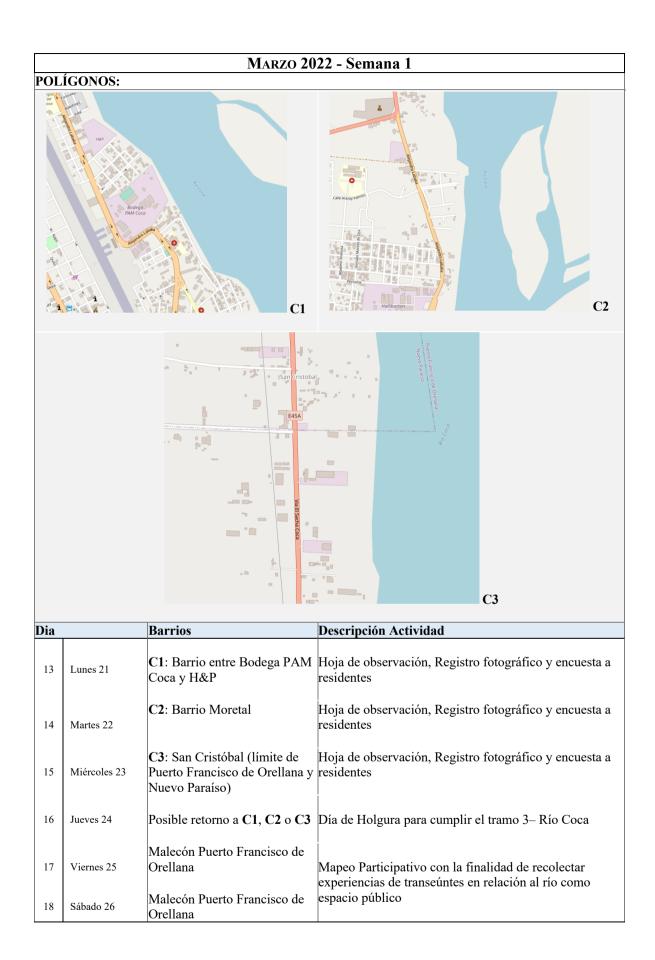
Cronograma detallado

En el siguiente cronograma de actividades se especifican los periodos considerados para el desarrollo y culminación de la presente tesis de investigación. El trabajo de tesis se realizará durante 10 meses a partir de agosto de 2021 hasta junio de 2022. Además se puede considerar el tiempo de prórroga de 6 meses adicionales.

Trabajo de Campo	recolección fotográfica, construcción de cartografía social método mapas parlantes.								υ,						
, ,	Enero Febrero						Marzo					Abril			
Lugares	3	4	1	2	3	4	1	2	3	4	5	1	2	3	4
Rectificación de instrumentos															
Preparación de materiales para trabajo de campo															
Preparación de materiales para															
mapeo participativo (mapas parlantes)															
	TRA	BAJO	DE C	CAMPO) (Tier	mpo ple	anifica	do: mí	nimo 1	mes; n	náximo	2 mes	ses)		
SEMANA DE .	PREPA	RACIO	ÓΝ, RE	CORR	IDOS .	DOCU	MENT	'ADOS							
Primer recorrido Visita y presentación con actores institucionales, sociales y líderes															


	I ILLI IIILICIO	11, 112001111			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Primer recorrido Visita y presentación con actores institucionales, sociales y líderes comunitarios o barriales									•			
REGISTRO FO	OTOGRÁFICO), DIARIO D	E CAM	PO, E	NTREV	TSTA .	SEMIE	STRU	CTUR	4DA		
Recorrido Río Payamino												
Recorrido Río Napo										Y		
Recorrido Río Coca												
CARTOGRAF	ÍA SOCIAL, M	APAS PARL	<i>ANTES</i>									
Mapeo Participativo (Malecón)												
RE	EGISTRO FOT	OGRÁFICO	Y DIAR	RIO DI	E CAM	PO						
Verificación del recorte territorial												
Identificación de usos de suelo y coberturas												
Análisis de Mosaicos del paisaje												
Análisis de metricas del paisaje												

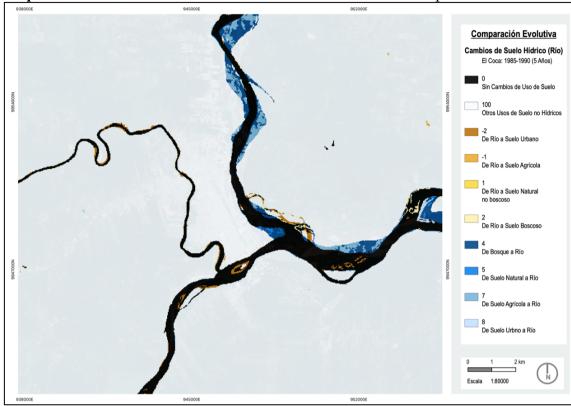

Fuente: Elaborado por la autora con información del trabajo de campo


Análisis de Clusters

Itinerario

El siguiente itinerario representa la distribución del trabajo de campo diario agrupado en semanas y pretende ofrecer datos relevantes sobre la ubicación de los lugares a visitar o recorrer y además describe la actividad principal, con el instrumento necesario y el objetivo que cumple. El presente itinerario se encuentra sujeto a cambios a medida que se desarrolle el contexto actual (Covid-19) y las posibles restricciones o limitaciones que ello implique.

Presupuesto detallado


El presupuesto que se presenta a continuación tiene costos referenciales que podrán estar sujetos a cambio a medida que el proceso de investigación se ejecute, teniendo en cuenta tanto salidas a campo como posibles inconvenientes o imprevistos.

Presupuesto detallado para el desarrollo de la tesis de investigación

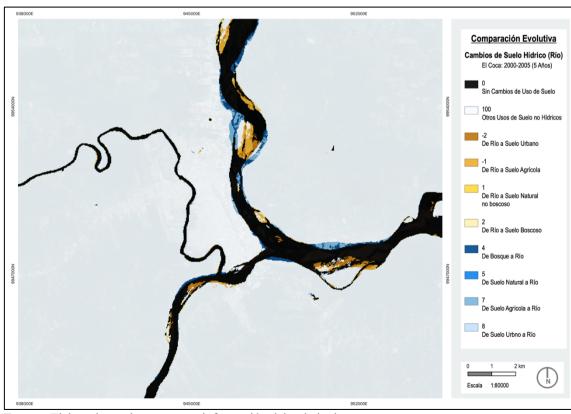
Rubros	Cantidad	Costo Unitario	Costo Total
Transporte			
Movilizaciones ciudad de de origen (Loja) - Puerto Francisco de Orellana y retorno Puerto Francisco de Orellana-ciudad de origen	2	32,00	64,00
Movilizaciones Fluvial Río Napo (Tres ríos)	1	100,00	100,00
Movilizaciones internas desde Coca hacia las zonas periféricas. (20 viajes semanales considerando ida y vuelta al hospedaje)	5	10,00	50,00
Alimentación			
Presupuesto máximo para comidas diarias (Desayuno, almuerzo, merienda y refrigerios)	45	6,00	270,00
Hospedaje			
Arriendo mensual en Puerto Francisco de Orellana en cuarto con internet	1	175,00	175,00
	(Transporte, al	Subtotal 1 imentación y Hospedaje)	659,00
Adquisición, procesamiento o análisis de información			
Imágenes satelitales de alta definición, incluye alquiler de drone y especialista (este valor podrá omitirse de conseguir acceso a imágenes gratuitas)	1	100,00	100,00
Datos móviles para geolocalización	2	10,00	20,00
Imprevistos	1	50,00	50,00
(Adquisia	ción, procesamiento o	Subtotal 2 análisis de información)	170,00
Material fungible o de oficina			
Materiales para ilustración de paisajes urbanos, hídricos y digitalización de paisajes.	1	75,00	75,00
Materiales para grupos focales y cartografías etnográficas (marcadores, papelotes)	1	10,00	10,00
Resmas de Papel Bond (encuestas y cuestionarios)	2	4,00	8,00
Impresiones (Cartuchos de tinta)	2	10,00	20,00
Empastado Tesis	2	20,00	40,00
	(Mater	Subtotal 3 ial fungible o de oficina)	153,00
		TOTAL	982,00

Anexo 2: Mapas Temáticos

Mapa 2.1. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 1985-1990

Fuente: Elaborado por la autora con información del trabajo de campo

Mapa 2.2. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 1990-1995



Comparación Evolutiva
Cambios de Suelo Hidrico (Rio)
El Coca: 1995-2000 (5 Aflos)

0 100
Otros Usos de Suelo ro Hidricos
2 De Rio a Suelo Agricola
1 De Rio a Suelo Agricola
1 De Rio a Suelo Agricola
2 De Rio a Suelo Natural no boscoso
2 2 De Rio a Suelo Agricola a Rio
3 De Suelo Agricola a Rio
4 De Bosque a Rio
5 De Suelo Agricola a Rio
8 De Suelo Agricola a Rio
8 De Suelo Librano a Rio

Mapa 2.3. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 1995-2000

Mapa 2.4. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 2000-2005

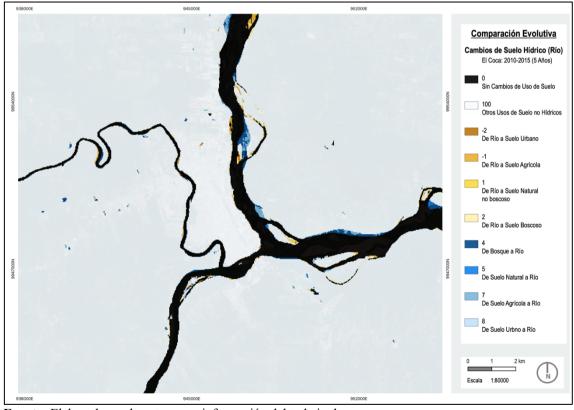
Comparación Evolutiva
Cambios de Suelo Hidrico (Rio)
El Coca: 2005-2010 (5 Años)

O Sin Cambios de Uso de Suelo no Hidricos

-1 De Rio a Suelo Natural no boscoso

2 De Rio a Suelo Natural no boscoso

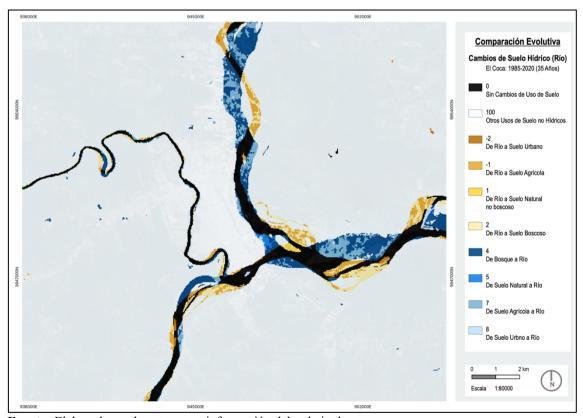
2 De Rio a Suelo Natural no boscoso


4 De Suelo Natural a Rio

7 De Suelo Natural a Rio

8 De Suelo Uthon a Rio

Mapa 2.5. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 2005-2010

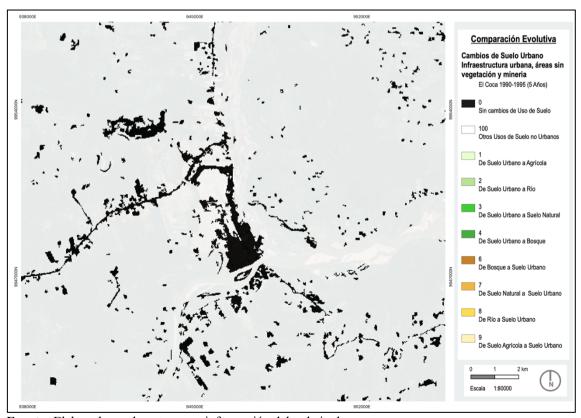

Mapa 2.6. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 2010-2015

Comparación Evolutiva
Cambios de Suelo Hidrico (Rio)
El Cosa: 2015-2020 (5 Años)
0 100
Otros Usos de Suelo no Hidricos
2 Para Suelo Urbano
1 De Río a Suelo Agricola
1 De Río a Suelo Boscoso
2 Para Suelo Boscoso
2 Para Suelo Boscoso
4 De Bosque a Rio
5 De Suelo Agricola a Rio
7 De Suelo Agricola a Rio
8 De Suelo Urbano a Rio

Mapa 2.7. Transiciones del Uso de Suelo Hídrico de El Coca en el periodo: 2015-2020

Mapa 2.8. 35 Años de Transición del Uso de Suelo Hídrico - El Coca (1985-2020)

938000E

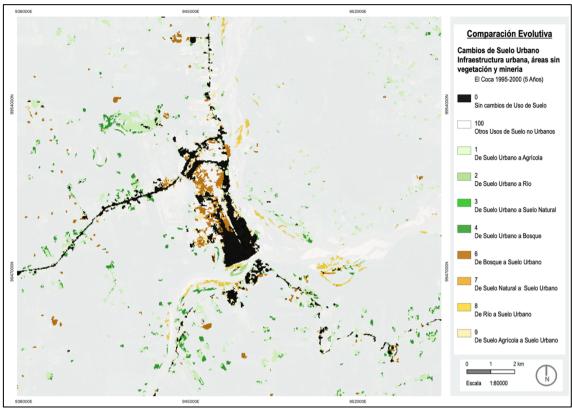

945000E

Comparación Evolutiva
Cambios de Suelo Urbano
Infraestructura urbana, áreas sin
vegetación y mineria
El Coca 1985-1990 (5 Años)

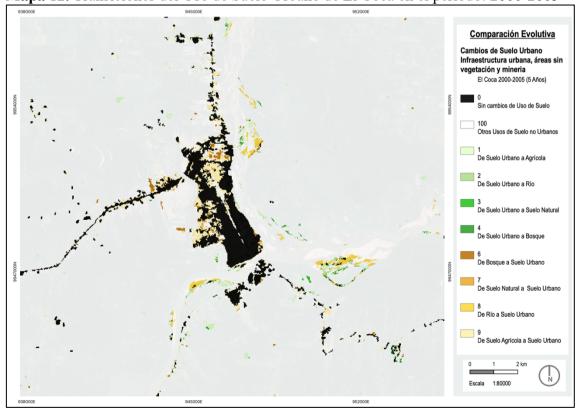
0 Sin cambios de Uso de Suelo
100
Otros Usos de Suelo no Urbanos
1 De Suelo Urbano a Agrícola
2 De Suelo Urbano a Rio
3 De Suelo Urbano a Suelo Natural

Mapa 2.9. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 1985-1990

Mapa 2.10. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 1990-1995



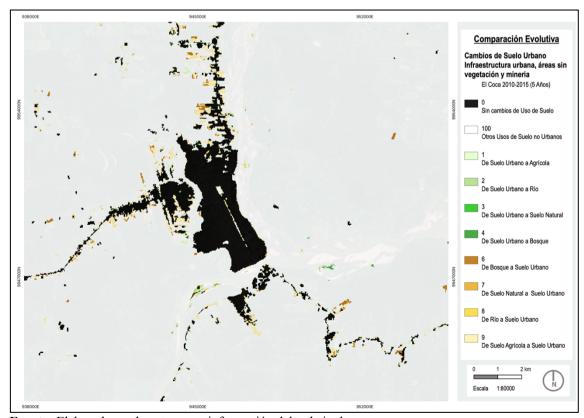
Fuente: Elaborado por la autora con información del trabajo de campo


4 De Suelo Urbano a Bosque 6 De Bosque a Suelo Urbano

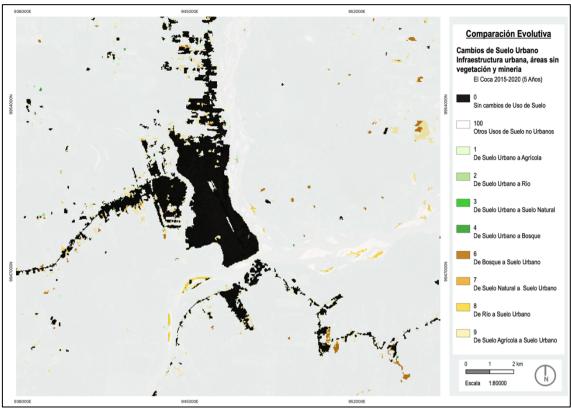
De Suelo Natural a Suelo Urbano

Mapa 2.11. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 1995-2000

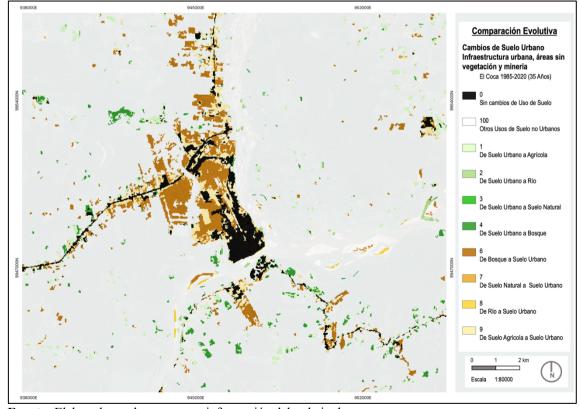
Mapa 12. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 2000-2005

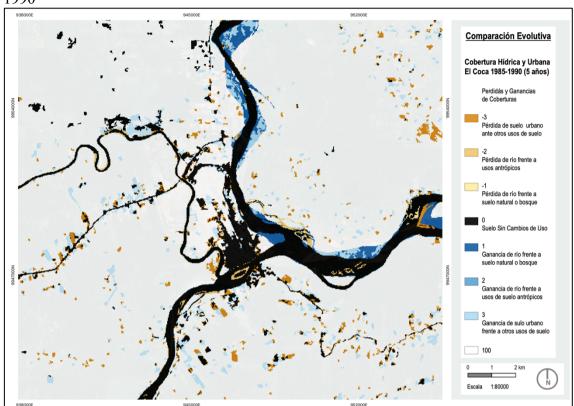


Comparación Evolutiva
Cambios de Suelo Urbano Infraestructura urbana, áreas sin vegetación y mineria
El Coca 2005-2010 (5 Años)

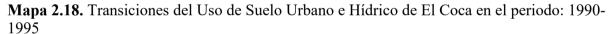

0 Sin cambios de Uso de Suelo no Urbanos
11 De Suelo Urbano a Agricola
22 2
De Suelo Urbano a Rio
3 De Suelo Urbano a Suelo Natural
4 4 De Suelo Urbano a Suelo Natural
5 De Suelo Urbano a Suelo Natural
6 De Suelo Urbano a Suelo Natural
7 De Suelo Urbano a Suelo Urbano
8 De Rio a Suelo Urbano
9 De Suelo Natural a Suelo Urbano
9 De Suelo Natural a Suelo Urbano
9 De Suelo Natural a Suelo Urbano

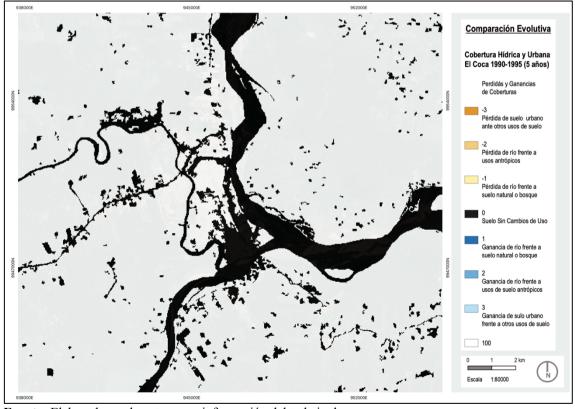
Mapa 2.13. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 2005-2010

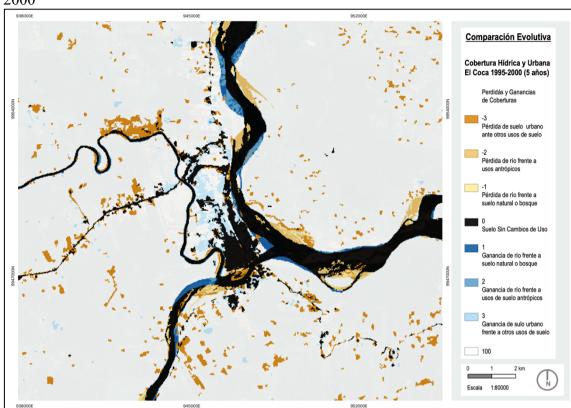

Mapa 2.14. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 2010-2015

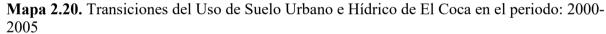


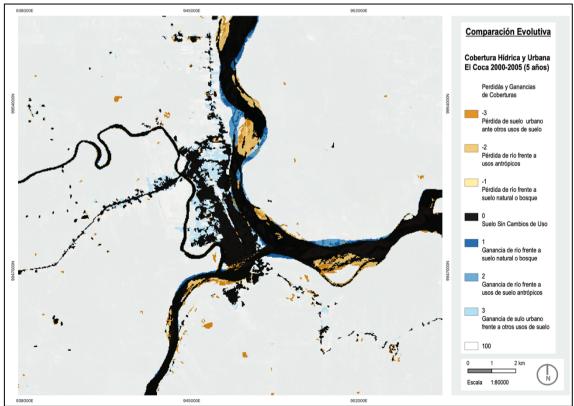
Mapa 2.15. Transiciones del Uso de Suelo Urbano de El Coca en el periodo: 2015-2020

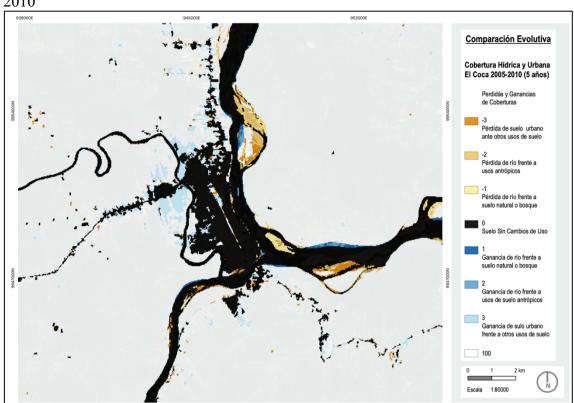


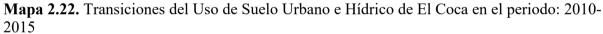

Mapa 2.16. 35 Años de Transición del Uso de Suelo Urbano - El Coca (1985-2020)

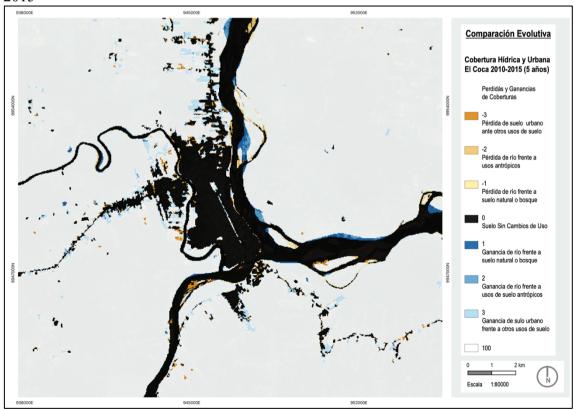


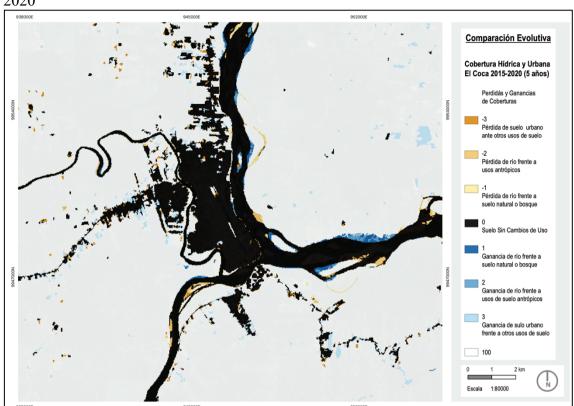

Mapa 2.17. Transiciones del Uso de Suelo Urbano e Hídrico de El Coca en el periodo: 1985-1990

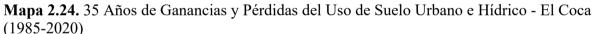





Mapa 2.19. Transiciones del Uso de Suelo Urbano e Hídrico de El Coca en el periodo: 1995-2000






Mapa 2.21. Transiciones del Uso de Suelo Urbano e Hídrico de El Coca en el periodo: 2005-2010

Mapa 2.23. Tranciciones del Uso de Suelo Urbano e Hídrico de El Coca en el periodo: 2015-2020

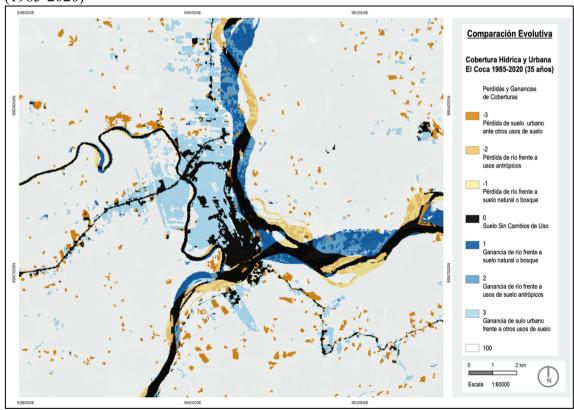


Tabla 2.25. Reclasificación de Códigos de Coberturas y Usos de Suelo

CÓDIGO	COBERTURA Y USO DE SUELO	RECLASIFICACION	CODIGO DE RECLASIFICACIÓN
3	Formación Forestal		
4	Formación Selvática	Suelo Boscoso	1
5	Manglar	Suelo Boscoso	1
6	Bosque inundable		
10	Formación Natural no Forestal		
11	Formación Natural Forestal	Cuele Netural ne Decese	3
12	Formación Campestre	Suelo Natural no Boscoso	2
13	Otra Formación Natural		
14	Uso Agrícola	Suelo Agrícola	4
24	Infraestructura Urbana	Constant Automics of south and	5
25	Otras Áreas sin Vegetación	Suelo Antropico y suelo urbano	5
29	Afloramiento Rocoso	Suelo Natural no Boscoso	2
30	Minería	Suelo Antropico y suelo urbano	5
33	Río	Har Hidrian a Cramo da Amar	3
34	Glaciar	Uso Hídrico o Cuerpo de Agua	3
27	No Data	No Data	6

Fuente: Elaborado por la autora con base a la clasificación de coberturas de MapBiomas, (2020)

Anexo 3.1. Análisis morfogenético: Transcripción de entrevistas

Ideas sueltas sobre los ríos en conversaciones cortas a Diocles Zambrano

Diocles Zambrano: Los químicos de la palma van al drenaje. Daña el contorno ecológico y social.

Marcos Baños: ¿Qué es importante investigar para saber el estado actual de los ríos de El Coca? La zona de influencias del relleno sanitario y las áreas de captación de agua para servicio doméstico.

2. Sección de Entrevista a Humberto Córdova

E: ¿Considera usted que los habitantes del cantón viven en un entorno seguro y saludable?

H: ¿Quiere que sea tajante? ... un 3

E: ¿Considera usted que los habitantes viven en una vivienda adecuada y digna?

H: un 4

E: ¿Conoce cuántas hectáreas se encuentran concesionadas para actividades mineras y petroleras?

H: (Primero habla que esa información la maneja más detalladamente el Ministerio de Ambiente y aporta lo siguiente) Lo que si le puedo decir con respecto a esto es que ellos tienen un espacio que queda desde el control que le llamamos nosotros que es la Y, hacia el Sacha. Esas hectáreas y el sector de Nuevo Paraíso son para ellos.

E: ¿ Dónde se localiza el uso de suelo de aprovechamiento extractivo?

H: en suelo rural, en la zona antes mencionada.

E: ¿Cuáles son y dónde se localizan las Áreas protegidas del cantón?

H: Tenemos varias aquí. Una que está incluso dentro de una Resolución de 1992 del Ministerio de Ambiente que es para proteger todo el río Payamino y su cuenca y el río Napo. En todas las riberas.

E: ¿Cuál cree que es el marcador de la expansión urbana, asentamientos humanos en las zonas de expansión?

H: Estos asentamientos surgen de forma espontánea y surgen generalmente cuando se abre una calle, a partir de la apertura de esa calle o esa vía comienzan a ubicarse.

3. Entrevista a funcionario municipal encargado del agua potable en la dirección de agua potable y alcantarillado del GAD Municipal de Orellana.

Toda la captación es en el río Payamino tanto la Planta de los Álamos como la nueva planta , y el municipio es el encargado de las plantas de captación, de tratamiento, y de

Este es el plano de todo lo que es la península de El Coca y el barrio Nuevo Coca y sus sectores(Flor de pantano, flor de Oriente y otras parroquias).En El Coca lo que está delimitado por el río y por la avenida interoceánica que le llaman Jerusalen, tiene alcantarillado sanitario, el resto de barrios a excepción de Flor de pantano no tienen todavía alcantarillado sanitario.

Cuál es el mecanismo o Cómo está formado este alcantarillado sanitario de aquí de El Coca

Aquí en el Coca existen para uso de los habitantes existen 10 estaciones de bombeo más 4 estaciones en el recinto militar, por acuerdos entre autoridades en su fecha cuando se construyó el alcantarillado debido a que la planta de tratamiento está construida en dónde fue una vez el terreno propiedad de los militares, entonces el acuerdo que llegaron en ese tiempo las autoridades fue que los militares entregan esta área de terreno pero a cambio les realizan un sistema de alcantarillado, recolección de agua y tratamiento en la misma planta. Por eso hay 10 estaciones de bombeo para el uso de los habitantes de El Coca más 4 dentro del recinto militar

:Cuál es el mecanismo o sistema

En la parte superior de la península (posterior a la gasolinera Payamino) existe una estación de bombeo, denominada estación de bombeo 1. Para poner un ejemplo y contextalizarle, la estación de bombeo 1 en su gran mayoría sirve o capta o llega el agua a esta estación desde todo lo que es el barrio "El Moretal",

Cuál es el inicio?

El inicio siempre es una vivienda, una casa o terreno, en la que existe una caja de aguas residuales. El sistema con el que está construido es con redes terciarias. Es decir que cada terreno tiene su caja, y cada caja está conectada con la siguiente y solo la caja que se encuentra en la esquina es común para una cuadra y la otra cuadra. Solo las cajas de la esquina se conectan al pozo. Esto se conoce como sistema terciario.

Este sistema terciario es mucho más amigable en cuanto a operación y mantenimiento. Antes de aplicarse este sistema de construcción, como se ve entre pozo y pozo, se encuentra un tubo de unos tres metros de profundidad. En la forma de construcción antigua llevaba de la caja directo al tubo. Imaginese si teníamos que hacer una reparación y esta vía se encontraba asfaltada, teníamos que romper el asfalto, cavar 3 metros para recién arreglar. En cambio con el sistema actual las cajas van en las aceras, además la ventaja de esto es que como no va al tubo sino que solo va de caja a caja la excavación no es muy profunda y oscila entre 1 metro y 20 de profundidad como máximo. Entonces si tengo algún problema en este tubo/sección, lo único que tengo que hacer es si la acera es de adoquines, quitar los adoquines, excavar 1 metro 20, en cambio en el otro lo que habría que hacer es parar el tráfico, quitar el adoquín o cortar el asfalto, perforar o hacer una excavación a 3 metros de profundidad, más el tiempo de reparación.

Esto va desde la parte más alejada hasta la estación de bombeo, pero el sistema de alcantarillado sanitario como el que se tiene en El Coca, funciona a gravedad, eso quiere decir que la parte más alta envía agua a través de este sistema terciario,

luego de pozo a pozo con el sistema secundario, y llegaremos a unas tuberías que son primarias y recolectan toda el agua.

Esto que le acabo de explicar en una manzana se réplica en todo el barrio, claro está que mediante pendiente llegamos a una altura determinada entonces, esta estación de bombeo está a una profundidad aproximada de 9 metros. ¿Por qué? Porque en la vivienda comienzo con 1 metro 20 y al final ya hay que llegar a los 9 metros.

Cuando ya se recepta y se tiene agua en el fondo del tanque pero el nivel de piso está sobre el tanque, entonces de alguna manera hay que volver a subir el nivel. Para esto, usamos bombas, estas bombas lo que impulsan es el agua que llega al pozo, impulsan el agua que llega a la estación de bombeo. Nuevamente se sube al agua para que de ese pozo que ya está alto (+1.20 m), comienza su descenso por medio de la gravedad hasta otra estación de bombeo.

La estación combina lo de la zona anterior, además de lo que se produce en la nueva zona (a manera de acumulativo)

Así que la parte más baja de acá, hablándole de la estación 8. Como ya se está casi llegando a la parte final o sur de la península, no puedo subir el nivel para que vaya a otra estación, así que la estación 6, 7 y 8 tienen la particularidad de bombearse directamente a través de unas tuberías metálicas, atraviesan el puente y llegan a la estación central 9. La estación 9 es la que recoge toda el agua de todo el Coca.

B1, B2, B3, B4, B5 se acumulan y se recogen en la B8

B6 B7 y B8 llegan a la B9 directo

B9 es la central

A la B9 también llegan las 4 estaciones de los militares (BM1, BM2, BM3, BM4).

Así mismo, desde la estación 9 va directamente a la planta de tratamiento con una sola tubería. En la planta de tratamiento, emplea pantanos artificiales. Es un sistema de funcionamiento con pantanos artificiales en la que llega a una especie de desarenador (sedimenta la arena), después pasa a los tanques INFO (en esta planta se cuenta con 6) a la que llega el agua sin muchos sólidos y cumplen la función de degradar la materia orgánica, las bacterias degradan sin presencia de oxígeno, son anaerobios y el producto de esa degradación hace que la materia orgánica se asiente y solamente sale agua, pero esa agua no está tratada, de los tanques INFO se pasa a los pantanos artificiales,

Los pantanos artificiales tienen una pendiente, de forma escalonada van descendiendo, y estos pantanos tienen pasto alemán que absorbe los nutrientes para purificar el agua antes de ser liberada en el medio ambiente. Antes de salir al ambiente se le hace un proceso de cloración, para matar los coliformes fecales y que tengan una baja carga de bacterias.

Los lechos de secado sirven para colocar la materia orgánica que se genera en el tanque INFO. Todo el sistema funciona aprovechando la gravedad y la presión del agua. Cabe recalcar que si existe liberación de gases contaminantes (metano), pero los mismos son menores a los que por ejemplo se liberan en un pozo séptico donde no hay degradación de la materia.

En la última parte (cloración) se le inyecta cloro a goteo ya para liberar el agua, esta es la que se considera como la salida que es cuando desemboca en el río Samona, afluente del río Napo.

Segunda Parte:

 ξSe consideraría a futuro emplear el agua que se libera en el río en algún otro uso como lo es el riego?

En El Coca no existe la necesidad de reutilizar el agua tratada, ya que se cuenta con varios afluentes de los que se puede disponer. Gracias al tratamiento actual se ha logrado evidenciar peces.

Sobre las descargas de alcantarillado existentes:

Antiguamente, se descargaba directo al río. Pero actualmente se realiza una recolección por medio de un tubo de toda la red para evitar que desemboque en el río. El sistema de alcantarillado antiguo que corresponde a la parte consolidada de El Coca que llega hasta el antiguo municipio (calle Uquillas) hasta el puente y tiene una edad de aproximadamente unos 35 años; entonces cuando recién se comenzaron a realizar trabajos de saneamiento y de alcantarillado, no se manejaba mucho el concepto de medio ambiente, protección de la naturaleza, y la forma de construcción de ese tiempo era que un solo tubo servía para mandar el agua de la lluvia y el agua residual directamente al río.

Toda esta infraestructura está enterrada, está adoquinada o asfaltada, es decir, que ya está consolidada. Entonces lo que se hizo (como se puede observar en lo consolidado no hay cajas), los tubos que funcionan para las dos cosas, se intersectan por medio de los separadores, pero solo llevando el agua residual. Cuando hay agua lluvia desborda los separadores y llega al río, ¿Pero, por qué?, porque estos tubos que estaban instalados servían para las dos cosas, formando un sistema combinado. Cuando solamente hay agua residuales se lleva con este tubo que se colocó, el tubo recolecta y lleva a la planta de tratamiento. Pero cuando llueve, como por el mismo tubo pasa el agua lluvia, ya llega a un punto alto que se sobrepasa, si sobrepasa no es sanitario es agua que llovió, entonces desborda y va al río. Pero el agua que llega al río no es digamos 1% sanitario y 99% agua lluvia. Entonces la disolución que se le hace a través del golpe de agua, y toda la parte de regeneración del agua, ya es mínima a diferencia de lo que había antes. Cuando ya llueve mucho, ya se satura el sistema, y obviamente las estaciones de bombeo que están diseñadas las bombas para aguas sanitarias ;

están diseñadas para el volumen de agua sanitaria que no es el mismo volumen de agua lluvia. Cuando llueve llueve. Las estaciones de bombeo hay algunas que se encuentran en la zona central (cerca al MACCO, al puente nuevo), existen tres zonas de bombeo en zona central no existen problemas de olores ya que el agua que entra, sale. Se bombea las 24 horas del día, en un sistema que funciona por niveles, si el agua está baja la bomba no se prende, si el agua subió ya se prende y automáticamente se prende y se va.

¿Con el resto de aguas lluvias, en la parte nueva (no consolidada)?

En la parte que no está consolidada ya es independiente, un tubo para aguas lluvias y un tubo para aguas residuales. De aquí de la Napo y de la Uquillas para arriba ya funciona de esa forma, uno para aguas lluvias y otros para aguas sanitarias, ya no es combinado como el que existe en el área consolidada.

¿Y usted me preguntará porque no hacen esa obra acá?

Y por qué no hacen esta obra acá, es por el gran peso en el presupuesto de la institución. Imagínese que para hacer toda esta parte de acá (señalando la parte nueva) costó 50 millones de dólares. Y aparte hay personas que todavía no cuentan con servicio de alcantarillado que es más bien una prioridad. Exactamente, Barrios como Nuevo Coca y Guadalupe Larriva necesitan el servicio y están en expansión.

Pero la cuestión de aquí es que de lo que vemos delimitado, se encuentre un terreno legalizado o bueno es legal. El área delimitada por un riachuelo es legal y desde ahí hacia adentro todo es producto de fincas que han parcelado, han sido también producto de invasiones que por el paso del tiempo, las invasiones reclaman los derechos de servicios de agua potable y de alcantarillado.

Para invertir dineros públicos, se necesita que sea área pública y si esto es área privada no se puede invertir. En Nuevo Coca se está instalando el agua potable pero hay algunos sectores que todavía son privados entonces que se está haciendo se están regularizando. Hubo una ordenanza donde les otorgaban, no la escritura sino un reconocimiento como posesionarios legales de ese lote después de estar permaneciendo 1 año. Con la reforma de la ordenanza se cambio desde 3 años a 1 año. Algunos invaden porque no tienen otros invaden para vender. Entonces en la ordenanza le pusieron es que si yo soy posesionario de un lote de terreno, y no tengo escritura, se sobreentiende que el escrito de un posicionamiento es porque no tengo lote, no tengo donde vivir, algunos se han aprovechado teniendo 2, 3, 4, 5 lotes y los venden. Anteriormente que pasaba llegaban y decían quiero vender por calamidad doméstica, presentaban sus justificativos y hacían el traspaso del anterior posesionario al nuevo posesionario. Ahora si quieren pasar del anterior posesionario al nuevo posesionario tienen que pagar 20 salarios básicos a la municipalidad para hacer el cambio de posesionario. Entonces mire basicos a la inidicipandad para nacel el cantiol de possesionario. Entonices line un terreno que supuestamente le podría valer \$10000 pero acá en la municipalidad tienen que pagar más del doble de lo que me cuesta el terreno, entonces ya se está desincentivando la compra de terrenos en esta modalidad. Si usted es posesionario y quiere vender, el nuevo posesionario tendrá que pagar 20 salarios básicos que son aproximadamente de 8 mil a 10 mil dólares. Así, ya no es rentable ni el vender ni el comprar. Ahora si a pesar de eso quiere comprar, también se debe considerar la escritura. La escritura también tiene otra ordenanza que dice que le subsidia el 99% del valor de la tierra siempre y cuando su ingreso per cápita familiar, del grupo familiar no pase de 3 salarios básicos mensuales. Si va pasa de los 3 salarios básicos mensuales no paga el 100% sigue pagando el

10% y el 90% está subsidiado. Imagínese hasta eso le subsidia las ordenanzas de aquí de la municipalidad y a pesar de eso no sacan las escrituras. Más les cuesta el trámite en la notaría, y el registro propiedad que en el municipio pero la concepción que tienen es que igual me cobran, igual tengo que pagar al municipio. Y esos pagos no son del municipio sino de la notaría. Pero si ya le alivian el precio del costo del terreno y obtienen la escritura que sale con 10 años de gravamen, osea esta hipotecado con la municipalidad por 10 años, no puede venderlo, salvo algunas cláusulas, pero eso ya es diferente.

Comentarios extra:

Esta parte del Dorado 2, sirvió como para entregar terrenos municipales, ya esos si están legalizados, no son invasiones, son terrenos que hizo la municipalidad para entregar a beneficiarios de la erosión del río Coca, pero también a otros que lo necesiten mediante datos del censo poblacional. Esas personas fueron reubicadas y en zonas aledañas se está poblando. El área donde se pretende colocar un tanque de agua ya está ocupada, ya está invadida.

Sobre las viviendas del centro y la evolución de la topografía de El Coca:

Se puede ver en el centro en la parte consolidada que existen casas que tienen una o hasta dos gradas hacia abajo. En la calle Napo desde la calle Chimborazo se puede observar esto que le menciono del relleno y el nivel de la calzada. Las casas más antiguas están más bajas.

4. 17 de Marzo de 2022- Entrevista a Bolivia Uquilla

Esta entrevista fue concertada gracias a la ayuda del Sr. Polibio Pauker, a pesar de que fue una oportunidad imprevista, se lograron verificar algunos hechos sobre el rol de los ríos y la morfología inicial de El Coca. Esta versión es la trascripción completa de la conversación suscitada en esa tarde de marzo en casa de doña Bolivia Uquilla.

Después de acomodarnos en su sala, doña Bolivia empieza a mirar al pasado y relata:

-Yo, tengo ya 89 años; y yo vine acá en 1945 (cuando Bolivia tenía alrededor de 12 años). Llegamos a la desembocadura del río Coca y Napo, a un campamento que era del ejército en el tiempo de la guerra del 41. Bajaban las brigadas del ejército para defender al Ecuador e hicieron el campamento ahí en la

desembocadura del río Coca y Napo, entonces quedó el campamento. Pero como eso pasó en el 41, cuando yo que llegué con mis padres en 1945, eso estaba botado, remontado, era potrero, había árboles frutales de todo: naranja, limones, mango, de todo, banano, todo eso había, lo que habían sembrado los militares.

Bueno, llegamos ahi y esto era monte virgen, no había un alma aquí, libre de nosotros que llegamos. Llegamos acá porque el comandante del ejército de la bocana de la desembocadura de aquí, abajo a un punto que se llama "El Edén" entonces allá se ubicaron y comenzaron a mandar grupos del ejército de 4 soldados y un sargento a Huirrirma, a Tiputini (que es ahora el cantón). Entonces ahí por medio de ellos subían al Edén, a recibir los viveres que les daban y llegaban a la casa de nosotros que vivíamos Sinchi Chicta (que quiere decir río fuerte, una ranura del río en kichwa). Entonces ellos le comentaban al comandante del Edén, que vivíamos nosotros que ya estábamos como dos años en una pequeña finiquita y bueno cuando le comentan al comandante, él le escribe una carta a mi papá preguntándole:

-¿Por qué no viene a vivir en la desembocadura del Coca con el Napo?

-¿Para qué?

-Para que venga (esté) cuando sube la gente.

Porque como antes no había motores y todo era a remo y palanca y esos pobres militares subían a remo y palanca del Edén a la desembocadura de El Coca y de allí iban a Puerto Napo (ahora Puerto Misahualli). En Puerto Napo se hacía siquiera una semana, 8 días, 10 días. Entonces mi comandante le habla dicho a mi papá:

-vaya usted, le nombramos $tambero^{28}$, un nombre que dabanmenciona ella.

-le vamos a dar un pequeño sueldito y de paso usted...

Bueno en la finca nosotros teníamos gallinas, puerquitos, perros, de todo, subimos con todo- narra Doña Bolivia con el propósito de demostrar cómo ellos tenían opciones para aportar al rol a ser encargado.

-Como tienen ustedes -dice- allí preparan la comiditay les vende a la gente que llegan allí, descansaban un día y seguían el viaje, y lo mismo de bajada, bajaban se quedaban allí y luego se iban.

Esto fue botado completamente, no había nadie, nadie habitaba. Era una zona de descanso después de la guerra. La gente que era de la ribera han sabido vivir por el Río Coca y por el Río Payamino pero no daban señal de vida porque ellos vivían allá adentro. Entonces esto era virgen.

En toda la unión del Coca y el Napo, aquí era el campamento. De este lado (aclarando que era la ribera izquierda al bajar por el río Napo, donde actualmente se ubica la zona más antigua de la ciudad de El Coca). En el cuartel que hicieron los del ejército había tres casas grandes para los militares, de pambil²⁹ y guadua. Paredes de guadua y pisos de pambil. Tres inmensas casas, la una era más retiradita seguramente era de los oficiales, era de piso bajo y las otras dos eran piso alto, doble piso, ya pues esas casas vinimos a habitar, pasamos años ahí, ya pues venían los militares y habían también los ribereños que ya cómo pasó la guerra volvieron a ubicarse en la ribera.

-¿En qué parte vivieron (los ribereños)? ¿Cuáles eran, quienes eran?- interviene Don Polibio

Don Carlos San Miguel, Jorge Rodriguez. Jorge Rodriguez fue el dueño del Eden, pero él ya había dejado eso por venir a trabajar el oro en el río Coca. Porque Jorge Rodriguez se ubicó en el Payamino y Carlos San Miguel en el Coca. Ellos volvieron a bajar entonces Don Carlos San Miguel se ubicó en San Carlos y Don Jorge Rodriguez se ubicó en lo que se llama ahora Primavera. Ahí se ubicaron, entonces mi papá pues también, y ya la gente como se dice transitaba (los militares más que todo) y ellos (los ribereños) que salieron pertenecían a esta parroquia.- aclara: -pertenencia luego, después, no a Nuevo Rocafuerte.

Entonces decían que querian ubicar un pueblito ¿Dónde?- se preguntó -Porque decian... bueno en el río Coca donde vivia la señora Margarita, que fue la primera enfermera de la sanidad. Bueno, los ribereños formaron un grupo (Don Jorge Rodriguez, Nestor Rodriguez, todos ellos), inclusive se llamaba..., (pusieron ellos mismo el nombre), mi papa era el secretario y formaron un grupo que se llamaba "Union Ribereños". Ellos pensaban en las carreteras que hay ahora, pensaban sacar una pica³0 para hacer la carretera algun día, entonces se fijaron en la vieja Armenia que se llama acá, pero como se iban (guiando) según la ubicación del río, todo era mucho palo, palizadas y decian que no, porque con el tiempo han de venir las lanchas brasileras como hay ahorita más arriba de providencia, entonces que por eso no. Entonces ubicaron acá (actual El Coca) e hicieron al otro lado del río Coca. Entonces ya se transformo la parroquia en una

pequeña comunidad, que se llama ahora y que antes le decía caserio. Caserio se llamaba antes- aclará nuevamente.

Bueno, Don Jorge Rodriguez, Carlos San Miguel, Zoila San Miguel (hermana de Don Carlos), los Antanio Emeliton Llori, Ermesto Rodriguez, todos vivnieron a hacer sus casitas ahí. Abrieron una callesita que llenaban de arena y piedra no, porque la piedra era escaza aquí, se sacaba del barranco; pusieron arena, hicieron un desmonte, hicieron casitas hasta el fondo. Hicieron algunas casas.

La familia Llori que tambien estaban enmbaucados en la bocana del Zumo bajaron vivir más abajito en lo que es ahora Amaronmesa. Hacian una pica y venian aquí. Entonces ya eramos de la comunidad como se dice ahora.

¿En qué año más o menos fue eso que hicieron el caserio?- preguntá Don Polibio Pauker

Eso ha de haber sido en el 1946, 47 por ahí, ya entonces los que podian salian, pues así, llendose a Puerto Napo y salían a palanca y a remo, pero hacián como un mes, quince días, díez díaz, en la inmensa correntada arriba, que es porque baja el río. Entonces las casitas tenian ahí de todo. Don Carlos Don Jorge, Doña Zoila Llori y nosotros seguiamos viviendo aca. Don Jorge Rodriguez salía a Quito, y en un viaje consiguío una maestra para que de clases a los niños que eran de la familia Llori y los demás que aquí habia.

Nosotros como ya teniamos cursado media escuela, yo entre a quinto grado, antes se llamaba *remoción*, es decir, en un año se pasaba 2 años. Hice el 5to y 6to grado con una señora que le contrato Don Jorge Rodriguez -a la cual le- pagaban los padres de familia. Porque el Estado no daba pues. Los padres de familia le pagaban a la profesora. La profesora se llamaba Carmen Moncayo.

¿Y ella de donde vino? -pregunta Don Polivio Pauker

Ella vino de Cuenca, era cuencana, una señora creo que era madre soltera o separada, tenía una niña y un niñito, primero el niño y la niña más chiquita. Una señora simpaáica, le pagaban los padres de familia. Daba las clases y cuando tenia vacaciones se iba a Primavera donde Don Jorge Rodriguez y luego venía, pasaba allí v así

Pero la fuerza del río Coca y cuando crecía el río iba derrumbando eso era arenal, es arena, la señora Margarita tenía una casita a la orilla, lejitos era, y de eso cogio otro mas adentro, hasta alla llegó el barranco (que se formaba cuando subia el agua). Pero bueno, cada que crecia se derrumbaba, bueno entonces ya cambiaron de idea, venía una comision de Rocafuerte, Nuevo Rocafuerte a ver donde se ubicaba la nueva parroquia. Porque todavia no era cantón. Al otro lado nosotros teniamos ganado con mi papá, nosotros y mi papa teniamosal otro lado, era potrero eso. Pero hubo una temporada, en la que a los que ahora les dicen los Huarani, antes les decian Aucas, asaltaban a la gente, asaltaban y mataban.

Inclusive allá (en el potrero) asaltaron dos veces y me mataron a dos (vacas). Bueno, teniamos el ganado allá, mi esposo sabia irse a rondear el ganado y contar para ver sino pasaba nada, nunca paso nada. Ya después mi papa vendió de poco en poco el ganado, así a los militares que llevaban, nosotros pasamos acá a la bocana de la desembocadura del río Payamino donde también teniamos potrero. Bueno, y así no habia como tener pues les vendimos todo.

Vino esa comision de Rocafuerte (Nuevo Rocafuerte), vieron este lugar pero por el motivo de los Aucas dijeron que no porque el gobierno prohibio que nadie viva a ese lado desde arriba hacia abajo, entonces echaron el ojo a este lado. Aquí vivia yo, ya me casé con el que fue mi esposo, él andaba de comerciante ambulante y bajaba hasta Nuevo Rocafuerte y regresaba y se quedaba ahí en la casa. Después se compró una casita de paja y pambil aquí (la vivienda de doña Bolivia actualmente). Este lugar que era de una indígena, una indígena creo que era de los señores Lloris que bajaron ya del Sur. Bueno la finquita era una casa grande de paja y pambil y guadua. Mi marido había comprado soltero, el compró para tener el descanso aquí para seguir río arriba y río abajo.

¿De donde era el?

Él, el papá era de El Carchi y la mamá era de Quito, la mamá se llamaba Emilia Quiroz, claro vinieron por acá.

Quiroz?, ella era familia de Doña Olimpia

Hermanas, la mamá de mi marido era hermana de Doña Olimpia, hermana de la Carmita Urbina, son hermanas. Eran Emilia, Olimpia, Doña Jesus y Doña Dolores que vivian en el Tena. Tías de mi marido. Así es que se ubica el pueblito allá, ya como se llevaba el barranco toda la gente iba ubicándose en la ribera. La señora Zoila fue a San Carlos donde el hermano, ahí tenía. Los San Migueles se ubican en San Carlos, por eso se llama así.

Y Otto?

 $^{^{28}}$ Persona que tiene a su cargo un tambo o establecimiento ganadero. Diccionario de la Real Academia de la Lengua Española (RAE).

²⁹ Pambil o chonta es una especie de palmera cuya madera tiene múltiples aplicaciones en la cotidianidad.

³⁰ Herramienta usada principalmente en la construcción para cavar y remover terrenos duros y piedras.

Otto es más joven, era el hijo de Don Jorge Rodriguez, él fue el dueño de La Primavera. Guamayaco los Lloris, la familia Llori, en San Carlos familia San Miguel, en Providencia los Rones, en Pompeya los Rodas o creo que era Don Marcial Rodriguez?

> -Don Marcial Rodriguez estaba más arriba en Terere. Más arriba de Terere, más arriba, más arriba,

En Providencia Don Victor Ron, todos los hijos de don Victor se ubicaron en las ribera. Claro ellos vivían en la ribera, pero antes eran más patrióticos, no se como se llame, cada fecha cívica se reunían en el caserío. Venían y la gente traían sus cosas se festeja, se festejaba el día, se bailaba, todo ahí. Luego, ya como le digo, y vuelvo a decir que se llevó el barranco, buscaban dónde ubicarse. Echaron el ojo aquí, yo ya vivía acá. Yo ya me casé a los seis o siete años después de haber conocido al que fue mi esposo, ya me casé, me vine a vivir acá con él.

¿En que año se casó usted?

Yo me casé en 1951 o 52. Yo por el accidente que sufrí, yo me caí en Ambato tengo una protesis y cojeo, de ahí antes yo saltaba y brincaba. Dicen antes, pues los esposos hacían ellos las cosas y casi la mujer no sabía lo que hacían así como era su papá con su mamá- indica dirigiéndose a Don Polivio Pauker. -Bueno, entonces dicen que le ha comprado el municipio de Aguarico ha de ver sido, había comprado en 700 o no se cuantos sucres. Y se ubican acá.

El primer teniente político era un pariente de Don Jorge Rodriguez, la señora (esposa del teniente político) era Carlota Valseca y era-tratando de recordar- el esposo se llamaba Gonzalez. Él fue el primer teniente político, mi papá era el secretario, después fue Oswaldo San Miguel, después ya cuando se pasaron acá, vino después de Alfonso Gonzalez, el primer teniente político. Entonces él se fue. se debe haber ido a Quito, no se a donde fueron, vino otro teniente político que era un mayorcito que se llamaba Honorato de Cordova, entonces ahí ya se fue mi papá, ya se salió de ser secretario y entró mi compadre que fue Oswaldo San Miguel. Entonces cómo se llevaba el barranco el pueblito, Oswaldo se llevó a la tenencia política arribita de El Coca, a vivir allá con el teniente político. Hasta cuando compraron, dicen que compró aquí, entonces vinieron, la casita que teníamos nosotros se les cedió. Nosotros hicimos otra casita más arribita

El río era..., si quiera se llevó unos 100 metros si no es más. Porque se oía lo que se conversaba aquí se oía al otro lado, ahora ya no, así era. Entonces, todo eso era el barranco, nosotros vivíamos más arriba. Entonces, pasó el teniente político a vivir en la casita que era de nosotros, con Oswaldo San Miguel de secretario.

Pasaba el tiempo, ya comenzaron a venir más gente, vino la misión, después vino una compañía que se llamaba Interoceánica.

La GCI -aportá Don Polivio

La GCI era la que hacía las perforaciones desde más antes, cuando nosotros estábamos en Shushuficta ya iban buscando donde hay petróleo, la CGI, la monolítica, después vino la interoceánica. Que hizo el campamento lo que es ahora el parque, todito eso hicieron, (el proyecto de la carretera interoceánica).

-Claro ellos pensaba hacer la carretera interoceánica, pero fue proyecto y

quedó ahí pues. -Si, ahí se quedó

Se alzó la compañía,

-Cuando se pasaron de allá-acá, ¿Cuántas familias pasaron acá?

Aquí casi nadie, solamente Oswaldo San Miguel

-¿y ustedes? Y nosotros y el teniente político.

¿En qué año más o menos fue eso?

-Eso si no recuerdo, ya pasaron años, ¿Los curas cuando vinieron?

Después, ya estaba asentado el pueblito aquí. Ya había el Teniente político. Intervención de Polivio Pauker

-Para hacerle recuento a usted, yo vine más o menos en el año 1963 o comenzando el 64 llegué yo acá. Cuando yo llegué, llegué en pantaloneta (guambrito era) de 12 años. Entonces yo ahí veía la casa de ustedes, el palomar que le decíamos, de su papá. -recuerda Polibio

-Sí de mi papá, una casa grande era la nuestra.

De ahí más allacito había la casa del señor Vasquez, ¿Cómo se llama el señor?

-Hernán Vasquez.

-atrasito más atrasito.

-¿De dónde vino el señor Vasquez?

-Verá, el como digo es una larga historia, él era empleado de un señor Mejía, Francisco Mejía. Un señor colombiano, él tenía un almacén en la boca del Punino, trabajaba con la gente del Payamino, indígenas que eran del pueblo, del pueblo índigena . Esos indígenas lavaban oro. Entonces este señor Mejía, puso una tienda, tenía eso sí de todo y la gente acudía a comprar allá. Entonces Don Pancho Mejía ya cuando vino la misión, la misión necesitaba gente para trabajar. Y mi esposo ya les cedió lo que es ahora esta calle ().

-el aeropuerto, lo que eran los cañaverales

-Vera esa parte, de aquí para allá que teníamos sembrado maíz y algodón. El algodón se cosechaba y se vendía al Perú así en masa , recogida con pepa y todo en sacos, saquillos. Entonces todo eso se le cedió a la misión. Vino (no me acuerdo el nombre del primer padre que vino), no fue el Padre Camilo.

-Asquita?

-No, Asquita vino después, cuando ya estaban haciendo la escuela, el colegio. Gamboa y la Fray Marian. Por eso le pusieron, nombre Fray Mariano, en nombre del que se ahogó, el hermanito, le decían pues, se viró la canoa, él vivía en Pompeya pero venía acá frecuentemente y ya se formó la misión ahí. Y la misión como recién vino puso una tienda, y el señor Noboa en el administrador, Hector Noboa, trabajó bastante tiempo con la gente que tenía la misión, que el señor Mejía les cedió a la misión y de paso también al capataz que era don Hernan Vasquez. Don Hernan entro a hacer el capataz de la gente de la misión y sembraron caña, todo eso. Para eso más antes había un pequeño aeropuerto del otro lado. Que construyeron, en el otro lado había un pequeño aeropuerto que aterrizaron ya avionetas, construyó una familia Olaya. La avioneta había la única compañía La TAO, venían las avionetas, aterrizaban vieron y todo. Pero ya todo eso se llevó el barranco. Pues entonces le reubicaron aca otra vez. De ahí vino para acá. Y la misión vivía ahí, ubicaron una casita también de dos pisos, de madera no más.

Dónde queda el convento

Donde ahora queda El Oasis que es de Don Fernando. Esa era la misión arriba creo que vivían y abajo era la iglesia

Y luego hicieron la otra iglesia que es ahora es la misión

-Claro eso hicieron después, eso hicieron más grande después.

Entonces el primer profesor que hubo para la escuela (ahora Padre Mariano de Asquita). Vino un profesor que se llamaba Wilson Parra. Mi Mauro, que es el primero de mis hijos, entró a primer grado, que jardín ni que nada como es ahora. Después se ubicó mejor, no se llamaba todavía Fray Mariano, era una escuela ahí sin, cuando muere Fray Mariano le pusieron el nombre.

-; Doña Bolivia v la Tamavo?

-La Tamayo verá cómo funcionaba allá en ese pueblito, bajó a San Carlos. Ya cuando se ubicó aquí ya hicieron una casita en lo que es ahora. Vino la escuela otra vez pero ya se llamaba Presidente Tamayo. Vino la escuelita acá, de ahí bajó a San Carlos. Los profesores venían y se iban a San Carlos a dar las clases. La gente que iban, blancos e indígenas a todos.

-Así fue oiga.

Yo en el 1963, 64 que llegue estaban la casa de ustedes, la de los Uquillas, más allá estaba don Vasquez, no había no más nadie, porque justo había una quebradita ahí (Hosteria amazonas). Ahí estaba la quebradita..

Eso dividía al pueblito, más allá tenía una finca, una casita, el ganadito que tenía acá parte pasó allá y ahí vivían. Entonces para estar en el pueblo, hizo el palomar que dice usted, que era una casita pequeña, él vendía caramelos, galletas, y contaba la historia de él.

-Y luego verá lo que me acuerdo, había esa, pasaba, aquí estaba donde era tenencia política que después fue el comando militar, esa casa se acuerde a lado estaba la de Margarita.

Había una calle, porque era como un caminito que pasaba a la misión. A este lado era un casa que ocupó la junta militar.

-Y ahí era la tenencia política también

Enfrente de la callecita a la orilla estaba Don Oswaldo San Miguel, que era el guardia del estanco.

Y hacia las colas también, hacían colas y era guarda estancos, compraba y distribuía aguardiente, porque había que sacar permiso.

Y viniendo para acá, había una casita que era de Don Rosas.

Ya después de que vinieron a hacer pueblito Don Rosas cogio, ahí el valle y más acasito. Doña Olimpia vino a donde estamos nosotros, mas arribita. Ella vivía en Armenia pero se bajó acá. En ese entonces ya había la interoceánica.

Se preparaba la comida, teníamos comedor, cuidaba la casa

Ya se alzó la interoceánica.

Al principio había bastante gente de la compañía.

En la desembocadura del coca que nosotros ocupamos quedó vacías las casas, entonces el ejército mandaba un grupito de 5 personas, 4 militares y un sargento, ellos seguían cuidando ese local ahí, ya nosotros estábamos acá. Ya se fue la interoceánica, esa gente se pasó acá, y vinieron más gente, vinieron los militares, en lo que es ahora la brigada, aquí eran bastantes eran medico, enfermeros, ya había bastante. Bastantes casas se hicieron, la interoceánica hizo bastantes casas, como era una compañía grandes hicieron bastantes casas, tenían todo, lavandería, todo, todo.

Eso vino a ocupar el ejército. Mucho tiempo estuvo el ejército, hasta cuando hicieron allá

En esa callecita así, la Napo. El padre Alejandro Labaka hizo unas casitas, había: una, dos, tres, cuatro casas. Doña Eloisa, Doña Veronica, Los Sánchez, a este lado así mismo hizo como tres casitas, y una de esas o dos le dio a su papá.

-Unita sí, unita la de atrás v de ahí hicimos nosotros la de adelante.

Y Doña Olimpia vivía en esa dirección, vino también doña Margarita e hizo más abajito. (Lo que es ahora la capitanía La Marina.) más allá adentro del río, puesto que eso también se llevó.

Acá de este lado vino Luis Salinas, pero había todavía las casitas porque si les dio el padre a Don . Ander y después otra don Domingo Vegay, la señora la mujercita se llamaba Veronica, y atrás vivía Pedro Catoca, la otra casita y más adelante allá en la esquina, Los Sánchez (pero ellos vinieron después), Blanquita Snahcez, pero era en las casetas que hizo el Padre Labaka. De ahí no había más, porque la escuela era la callecita que termina ahí y está terminaba aquí. Esto era monte, antes que sea la escuela Tamayo, mi esposo sembraba arroz, lo que es la Iglesia, era como lagunas, el agua filtraba y había el derrumbe, después de eso ha ido aumentando la

gente, en el 72 ya se pobló (ahorita creo que ya van a llegar al cañón).

Sobre el cañón de los monos.

Se ha ampliado el río, y correntoso ha sido siempre. Los monos

Eso pertenece acá y ahora pertenece al Sacha

En la Armenia vivían un grupo de nativos, los Wao (Los Aucas), un grupo que trabajaba con doña Olimpia porque Doña Olimpia también trabajaba para el Punino lavando el Oro.

Capitan San Jose, San Pablo Padilla, eran tres, el Yanez vino después. El capitán Jose y el capitán Pablo. De ahora acá abajo en Maromesa los Notemas, en Aronmesa. Toda la gente ya se ubico así.

-Antes yo me acuerdo. Yo me acuerdo de doña Olimpia que tenía los indígenas y decía son mis indios decía.

Es que así llamaban antes

-como dueña

-Tenían un grupo que trabajaban, con tal persona, entonces ellos les daban lo que necesitaban, la ropa, el techo, para la cacería pero ellos trabajaban en las alturas del payamino sacando el oro. Entonces cogian el oro, pesaban, les pagaban, y les vendían la mercadería, ahí mismo. Así mismo era don Pancho Mejia. Vendió la tienda a la misión entonces le pusieron al señor Noboa.

Pero el señor Noboa después se quedó.

Este aeropuerto, esta pista, más o menos en qué año había habido un avión, antes de que yo venga en el 1959 creó se había caído un avión había venido de Brasil, un avión grandote, por emergencia aterrizó aquí.

Mi papá sabía tener un diario, pero ese diario le dio, le regaló, al padre Santos. Que iba a hacer un libro eso deben tener en Pompeya, porque de aquí llevaban a Pompeya que también había la misión capuchina.

La base de la misión capuchina fue primero en Aguarico (Nuevo Rocafuerte sino que se llama cantón Aguarico, porque más abajo desemboca el río Aguarico, por eso se llama Aguarico), después en acá y en Pompeya.

Viejo Rocafuerte es más abajo

En la guerra se robaron no se cuantos kilómetros. La Arcadia, eso era de los Migueles, eso quedó en Perú, lo que es Pantoja ahora era ecuatoriano.

Osea la desembocadura del río Yasuní, era pero lejísimos del Perú y ahora colinda.

Y lo mismo en el Aguarico

Bajando el margen, todo a mano izquierda es peruano y a mano derecha es ecuatoriano, y Aguarico es frontera.

La isla valle esteros

Estas familias Padilla, Yanez, Llori, Mejia, los que conversábamos que tenían sus grupos de indígenas, son descendientes de caucheros?

Mejia no, los caucheros, Pancho Mejia no era cauchero él venía a lavar el oro. De ahí el se fue vendió todo y se asentó en Archidona. Vivía en Archidona y tenía su tienda acá con el empleado que era don Hernan Vasquez.

Antes de 1941 eran los caucheros.

Lo que no me queda claro es como se estableció la relación de los pueblos indígenas y las familias

Los Waos eran nómadas, andaban por aquí y mataban por allá, así era. Después ya se pasaban a este lado a matar a la gente que vivía en la ribera. Lo que sucede es que como entraron ya el Padre Labaka, comenzaron a tratar de contactarse con ellos, -pero en Rocafuerte, con los de nuevo Rocafuerte- esos son los que están contactados los de cauguinenoconnacu. Los de acá son los taromenane, los pucachacas y que ahorita están

Le matan al Padre Labaka. Porque él iba a irse de vacaciones un mes.

La GCI hacia las trochas para el Curaray no se donde,

Y los Huaorani impedían, les asaltaban entonces vino una comisión los jefes a rogarle al padre Labaka que vaya a mediar, porque el sabia el idioma y todo, entonces el padre desiste del viaje de él a España y se va con la monjita lnes, se van allá y se mueren. Le matan los Huaorani.

La historia de esos Haoranis asaltaban como dice Leopoldo, a este lado ya matan gente se robaron a una niña indigena, se pasaban de allá acá. $_{\rm c}$ Cómo venían con las lanzas?. Pero se pasaban, al regreso se robaban las canoas y se iban, cuando se robaron a la niña, se fueron en canoa, y antes como usan esos muchos aquí (señalando el cuello), los iba desgranando en el camino que ellos iban. Las pepitas de mullos de la pobre niña. Una niña de unos 5 añitos y le mataron a los papas. Fue terrible eso. Acá vivían los Norteños, tuvieron que ir al Coca, y dejaron de asaltar los Huaorani (Repite que ella les conocía como Aucas, salvajes) porque se formó un grupo de unos gringos en Pompeya, El Instituto Lingüístico de Verano (SIL por sus siglas en inglés) pero había una auca, una Huaorani que se llamaba Dayuma, que era criada por la familia sevilla. Pero ella se alejó de la familia Sevilla y dejó de ser esclava de ahí. Vino a andar con los propios de ella. Y ellos andaban así, verá cuando la iglesia era ahí en la orilla, al otro lado asomaban, no asomaban se oían, cantaban aves cantaban el mismo rato como van a cantar, púgiles, palomas, de todo, cantaban tigres, esos eran los Aucas

Señora Bolivia ¿Aquí atrás de la escuela?

-Aquí dicen que asomaban, y la gente veía pero se desaparecen, iban a ver y habian huellas de lo que habían caminado. Cuando hubo el asalto que le robaron a esa niña, y mataron aquí a algunos indígenas de don Aurelio Notero, esa gente trabajaba con nosotros, total que le matan a este Aurelio. Y con decirle que le clavaron una lanza, de aquí le pasaron aca. Le sacaron le cortaron de. Acá y de acá no le podían sacar le cortaron con serrucho

Si al padre Labaka le hubieran dado como 150 lanzazos que le habían dado.

Entonces había un asalto la avioneta de los gringos lingüísticos, se llamaban que aprendieron el idioma Auca, el kichwa y el castellano también debió ser. Tenían la base en Pompeya, tenían pista de aviación. Había un asalto de Aucas, la avioneta volaba siempre por ahí, pasaba. Era ya segurito. Pasaba un asalto pasaba la avioneta. Dicen que la Dayuma manejaba radio y se comunicaba con la avioneta. Pero desde que hubo que le mataron a una Auca mujer y a una la cogieron viva, herida, antes no había fusiles como tienen ahora los asaltantes, era con escopeta de chimenea. Como va la gente, ya estaba el señor flores aquí de profesor, él hizo gente, ahí mi hermano Alfonso, se reunieron, llevaron perros, escopetas, y los Aucas que hicieron, se. Botaron al rio. Discen que nadaban como animales en hilera llegaban al otro lado y se desaparecian. Pero la herida, la que le cogieron viva, se metía en un matorral de guadua. Y ahí es que se quejaba y gritaba ahí le cogieron viva a la Auca la otra le mataron y aquí la enterraron, pero se desapareció como no había señalización en el cementerio. A los tres días que van a ver los víveres, plátano, yuca. La gente encuentran a la Auca, que ya le había dejado los otros porque iban a hacer herida no la podían llevar. Y a don Aurelio Notero le matan después, el se iba a ver la comida de ellos, plátano y yuca que tenían y se va con el hijo y el va solo a cortar un racimo de verde y ahí le matan. Y el hijo que estab con la escopeta, le alcanza a disparar, esa creo es la que queda herida. Y el guambra se bota como le perseguían se bota a nado y le cogen en la bocana del río Payamino

Vera a la auquita que le cogia la tenia la mision, ya habian las monjitas Laurita Piedra. Era guambra, jovencita, media blanquita, le tenían ahí, la gente de curiosidad íbamos a ver, y decía que no hablaba castellano, pero decía "Agua", "agua", que le den agua. Pasaron dos, tres días, vino la avioneta de Limoncocha, los gringos,una gringa dice que se van a llevar. La Auca para hacerle curar a la Shell, porque la Shell también era de los gringos de esa misión. Que no, la gente del pueblo se opuso que no, se regresaron otra vez, hablaban seguramente con el presidente. Había un cuento un cacho, no se, si miento es porque me han mentido. ¿Cuál era el presidente? El Ecuador debía 7 millones a los Estados Unidos entonces estos lingüísticos, habían hablado con los jefes de ellos que le den a La Auca. Porque a la Auca la iba a tener la misión, para tenerla y civilizarla. Pero ellos se opusieron que vinieron al segundo dia, regresan otra vez y que le llevan, bueno ha dicho la misión que vayan acompañandole dos monjitas, bien han dicho los gringos, le llevan a la Auquita le embarcan en la avioneta y se fueron a la Shell, llegaron a la Shell hasta aquí nomás vienen ustedes les dijeron a las monjitas, de aquí para acá le llevaron al Auca a la clínica para sacarle las municiones que tenía. Nunca más le volvieron a ver, nunca más a esa muchacha porque era jovencita. Entonces el cuento era que le digo que si miento es porque me han mentido. La gente comentaba, los políticos ha de ser, que estos gringos trataron con los jefes que le perdonaba al Ecuador los 7 millones que debían pero que le dejen la Auca con ellos, que no se quede con los ecuatorianos. Y se perdió la Auca, nunca más se supo de ella, le llevarían, que le haría, pero de morirse no se moría porque en nalga estaba la munición. No estaba más herida, eso paso.

Los del ILV, que hacian, despues comentaba la gente indigena, que preparaban el veneno que matan en cacería, el curare, les hacían preparar a los Aucas tanques

de eso y eso les daban a estos gringos y ellos exportaban a la tierra de ellos. Una, otra, en la vieja Armenia, había, hay una quebrada y es empedrado y todo, ahí dicen que había estas piedras como cuarzo? Diamante? Mataban las aves que se llama el paujil que es como un pavo de monte. En el buche le encontraba esa pepa. Eso también les hacía recoger a esos Aucas que andaban. Entonces ellos se hacían del curare y de esos diamantes. Por eso después ya los expulsaron porque dicen que ellos le ponían a la gente esterilizantes. La gente que trabajaba ahí con esta misión no podía salir a trabajar con otra persona, sino solo con ellos por eso volaban al pueblito de Limoncocha, Limoncocha es una laguna en la que estaba un campamento. Había una autopista, y una callecita en un lado vivían los indígenas, en el otro vivían los gringos, al pasar la pista al otro lado, ellos no podían salir a ninguna parte, porque esos gringos les prohíben. Ellos eran como reyes. Su barrio era como en los Estados Unidos con todos los lujos, solo para ellos.

Lamentablemente todo eso se perdió. Todo se deteriora. Asi medio medio me acuerdo, porque uno no se anotaba.

Saracay, era la tenencia política, en 1969 se formó el cantón perteneciendo a Tena-Nano

Vivían cerca del río, Porque adentrarse a la selva implicaba encuentros con los pueblos indígenas. Del río, se bañaba, se tomaba, ni siquiera se hervía.

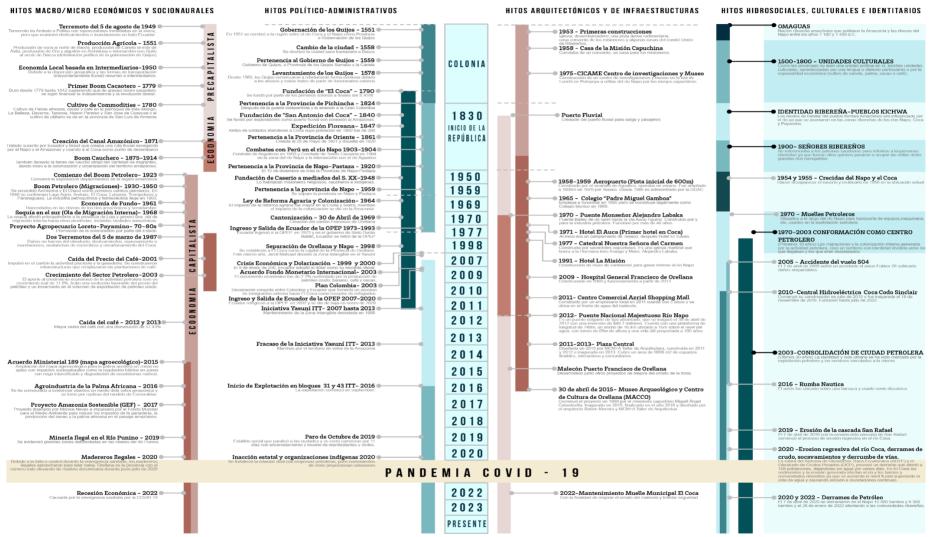
El correo hacía remo y palanca hasta Nuevo Rocafuerte, y regresaban. Llegaban a una casa y tocaban una bocina ya salían ahí viene el correo y salían a recibir la carta o a mandar. Yo fui la primera administradora de correos de aquí.

Se necesitaba el río para sobrevivir,para tomar, para lavar, para bañarse, el pescado también era bueno, no había dinamita, no había motores, no había nada, apenas las redes y atarrayas

El problema del desarrollo viene de las consecuencias, la contaminación, los baños se tiran al río, y la seguridad.

Sobre el antiguo puente:

El puente no tenía hija, el puente viejo, era de un solo carril, lo construyeron para lo del petróleo, para llegar a la brigada. Nadie supo cuando el Correita hizo sacar el puente.


Y ese puente podría ser peatonal, o para taxis y carros pequeños, para llevarlo a otro lado y conectaba directo con el Hospital de la Brigada, mucha gente lo usaba.

En Tena no le dejaron a Correa sacar y ahora tienen un puente peatonal o de emergencia.

Lo llevaron para otro lado.

Anexo 3.2. Análisis morfogenético: Linea de tiempo de El Coca

HECHOS HISTÓRICOS-DESAROLLO URBANO DE "EL COCA"

Fuente: Elaborado por la autora con base al trabajo de campo, entrevistas, y recolección bibliográfica.

Anexo 4: Bases de Datos

Tabla 4.1. Base de Datos para el Analisis de Diferencias (Escala 10 k)

ID	LULC1	EJE ²	AÑO ³	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN_MN	AI
2020-01	1	1	1	87,5052	405	4,0439	71,3253	11,8633	21,6389	1,3054	1	1,0623	1,0453	1,2946	34,0011	98,8379
2020-02	1	1	1	76,6887	472	4,7082	43,2296	18,6009	16,2884	1,2356	1	1,0557	1,0477	1,2902	33,4284	97,9899
2020-12	1	2	1	57,424	506	5,0501	23,52	19,7655	11,371	1,3594	1	1,068	1,0504	1,3014	41,2382	97,5213
2020-13	1	2	1	72,5008	332	3,3101	42,9772	18,0352	21,9027	1,3903	1,125	1,0731	1,0504	1,3278	35,0071	97,9994
2022-01	1	1	2	83,2033	222	2,2178	69,6266	7,0696	37,5164	1,3647	1,1667	1,0714	1,0515	1,2621	48,2882	99,3339
2022-02	1	1	2	75,7244	397	3,9621	49,379	13,2697	19,1123	1,2758	1,0833	1,0589	1,0504	1,2638	43,2196	98,5891
2022-12	1	2	2	45,3986	329	3,2841	17,8214	15,7139	13,8238	1,3834	1,1429	1,0711	1,0504	1,2592	51,3424	97,8146
2022-13	1	2	2	73,9111	163	1,6258	43,4272	14,0075	45,4613	1,2217	1	1,0395	1,0222	1,2836	35,9828	98,4869
2020-01	2	1	1	0,8752	196	1,957	0,0661	21,3457	0,4472	1,5476	1,3333	1,1026	1,0938	1,3836	69,7046	77,9437
2020-02	2	1	1	1,0524	284	2,8329	0,0672	20,9223	0,3715	1,3583	1,2	1,0766	1,0616	1,2997	99,298	80,358
2020-12	2	2	1	1,8683	910	9,0821	0,0908	39,7883	0,2057	1,4133	1,2	1,0895	1,0636	1,4275	38,2234	71,404
2020-13	2	2	1	1,5142	326	3,2503	0,1285	23,17	0,4659	1,4319	1,25	1,0886	1,0648	1,3113	91,9825	81,8236
2022-01	2	1	2	2,9618	183	1,8282	0,3566	16,7768	1,6201	1,398	1,25	1,0743	1,0688	1,2243	159,3016	90,7669
2022-02	2	1	2	2,355	184	1,8363	0,4501	13,7792	1,2824	1,3063	1,1875	1,0665	1,0535	1,1941	157,3376	91,6052
2022-12	2	2	2	2,2903	1034	10,3214	0,1737	36,2772	0,2219	1,3385	1,2	1,0812	1,0635	1,369	46,1653	76,5515
2022-13	2	2	2	1,7632	478	4,7677	0,1957	22,2256	0,3698	1,3228	1,2222	1,0776	1,0675	1,2644	61,0505	83,9099
2020-01	3	1	1	2,4784	154	1,5377	0,9559	20,0949	1,6118	1,5954	1,3333	1,0939	1,0937	1,3624	52,904	87,7671
2020-02	3	1	1	2,5477	71	0,7082	0,8324	14,2188	3,5973	1,6146	1,2	1,0881	1,0745	1,3684	41,4552	91,667
2020-12	3	2	1	9,0714	65	0,6487	8,2081	12,7363	13,9835	1,5769	1,2	1,0861	1,0634	1,3403	111,872	96,094
2020-13	3	2	1	8,0568	61	0,6082	7,5931	8,0527	13,2472	1,3887	1,2	1,0719	1,0605	1,289	135,872	97,5082
2022-01	3	1	2	4,8062	115	1,1489	3,5178	16,0524	4,1835	1,497	1,2	1,0797	1,0646	1,3329	57,1343	93,1009
2022-02	3	1	2	4,7909	48	0,479	2,5797	10,9476	10,001	1,6803	1,303	1,0953	1,0826	1,336	99,8477	95,4306
2022-12	3	2	2	8,604	109	1,088	7,8265	14,4184	7,9078	1,4428	1,2	1,0756	1,0618	1,3112	83,5582	95,4075
2022-13	3	2	2	7,5477	33	0,3291	7,3813	7,8784	22,9309	1,453	1	1,0643	1,0294	1,3209	135,6615	97,4866
2020-01	4	1	1	6,6404	1152	11,5026	0,6163	37,3876	0,5773	1,3354	1,1667	1,0727	1,0535	1,3007	47,3611	85,8286
2020-01	4	1	1	16,5024	1493	14,8926	3,1138	41,3182	1,1081	1,3354	1,125	1,0689	1,0504	1,3069	43,6887	90,0568
2020-02	4	2	1	11,8351	1738		1,1501		0,6823			1,0737	1,0504	1,3223	42,9766	
	•					17,3458		43,6197		1,3545	1,125					87,5824
2020-13	4	2	1	11,0772	1331	13,2705	1,2787	42,3013	0,8347	1,398	1,2	1,0794	1,0644	1,3036	45,5695	87,5651
2022-01	4	1	2	5,3501	196	1,958	3,0232	12,1512	2,7324	1,3646	1,2111	1,0745	1,0636	1,287	104,0599	95,1588
2022-02	4	1	2	5,7929	460	4,5908	1,1854	21,1992	1,2618	1,3331	1,2308	1,0721	1,0658	1,2294	78,3905	91,5784
2022-12	4	2	2	19,2853	825	8,2352	5,6361	22,2273	2,3418	1,3455	1,2	1,0738	1,0634	1,2874	55,9065	95,1546
2022-13	4	2	2	8,2001	1130	11,2709	2,1197	34,0557	0,7275	1,3671	1,2	1,0782	1,0637	1,3155	50,2164	88,42
2020-01	5	1	1	2,5009	554	5,5316	0,365	27,9527	0,4521	1,3385	1,2	1,0729	1,0576	1,312	59,4066	82,8354
2020-02	5	1	1	3,2088	806	8,0398	0,1788	33,7047	0,3991	1,3331	1,2	1,0739	1,0634	1,2881	64,7747	81,6487
2020-12	5	2	1	19,8012	860	8,5831	10,05	23,5163	2,307	1,3248	1,0955	1,0672	1,0504	1,2942	50,991	94,9327
2020-13	5	2	1	6,851	1028	10,2495	0,5486	36,0419	0,6684	1,3364	1,2	1,0721	1,0631	1,2586	53,5692	86,562
2022-01	5	1	2	3,6785	393	3,9261	0,4289	22,487	0,9369	1,3812	1,2308	1,0769	1,0637	1,2612	85,1743	88,7374
2022-02	5	1	2	11,3368	621	6,1976	5,9834	24,5526	1,8292	1,3291	1,2	1,0684	1,0567	1,2412	78,1208	92,9815
2022-12	5	2	2	24,4218	801	7,9956	11,6518	27,7303	3,0544	1,3714	1,1667	1,0683	1,0504	1,2734	52,3694	94,5809
2022-13	5	2	2	8,5778	943	9,4057	0,7379	38,2164	0,912	1,398	1,2105	1,0767	1,0618	1,2827	57,6079	87,2553

NOTA:

Esta versión corresponde a una base de datos simplificada de la original la cual cuenta con 460 muestras distribuidas en dos años y para 5 clases distintas de usos de suelo. Esta tabla fue creada para fines demostrativos de las variables empleadas en el análisis y en ella constan las dos primeras entradas correpondientes a cada uso de suelo según el eje del que forman parte.

- ²Ejes fluviales, donde: 1 = Afluentes del río Napo 2 = Río Napo
- ³Año, donde:

Tabla 4.2. Base de Datos para el Analisis de Diferencias (Escala 1k)

ID	LULC1	EJE ²	AÑO³	PLAND	NP	PD	LPI	LSI	A MN	SH MN	SH MD	FR MN	FR MD	ENN MN	AI
2020-01	1	1	1	15,7671	9	8,982	10,5997	3,5094	1,7554	1,3596	1,2281	1,067	1,0634	70,1004	99,367
2020-02	1	1	1	62,8511	2	1,996	62,8192	1,262	31,4885	1,2286	1,2286	1,0517	1,0517	271,2232	99,9669
2020-14	1	2	1	42,1016	21	20,9581	25,487	6,7346	2,0088	1,6305	1,3793	1,1034	1,1234	13,5215	99,115
2020-15 2020-24	1	2 3	1 1	61,5704 5,2387	12 5	11,976 4,99	39,1817 5,1991	5,1859 1,3442	5,1411 1,0498	1,782 1,035	1,4834	1,1245 1,0073	1,1208 1	32,2866 40,4273	99,4664 99,8488
2020-24	1	3	1	16,0614	5	4,99	11,0694	3,3425	3,2187	1,6871	1,4337	1,1133	1,1308	38,0217	99,4141
2022-01	1	1	2	13,2467	10	9,98	6,7024	3,1015	1,3273	1,376	1,2934	1,0765	1,0524	57,4836	99,4213
2022-02	1	1	2	22,7637	14	13,972	12,4384	3,5952	1,6292	1,317	1,0728	1,0531	1,0291	67,5915	99,455
2022-14	1	2	2	37,2513	2	1,996	19,2029	1,4585	9,6533	1,3271	1,3271	1,0663	1,0663	262,1488	99,8954
2022-15	1	2	2	57,0742	2	1,996	32,8072	1,9206	18,6629	1,435	1,435	1,0604	1,0604	181,6645	99,8491
2022-24	1	3	2	20,7259	6	6	4,842	1,7545	0,8192	1,1316	1,0385	1,0335	1,0275	29,3711	99,6577
2022-25 2020-01	2	3	2	51,2348 1,7575	5 49	4,99 48,9021	15,5643 0,3693	2,5143 7,9286	4,1535 0,0359	1,3198 1,177	1,194 1,0345	1,0498 1,0499	1,0535 1,0222	44,3005 23,7158	99,6668 94,7274
2020-01	2	1	1	1,7575	-	- 40,7021	0,3093		0,0339	1,1//	1,0343	1,0499	1,0222	23,7136	-
2020-14	2	2	1	0,0788	4	3,992	0,0299	2,2632	0,0198	1,1247	1,0351	1,0426	1,0208	194,2095	95,2725
2020-15	2	2	1	0,2295	1	0,998	0,2295	1,9792	0,23	1,9792	1,9792	1,1766	1,1766	-	97,913
2020-24	2	3	1	1,0864	28	27,9441	0,3982	5,6746	0,0389	1,1368	1	1,0312	1	26,8489	95,4691
2020-25	2	3	1	0,479	18	17,9641	0,1198	4,964	0,0267	1,1502	1,0172	1,0373	1,0111	21,4726	94,1761
2022-01 2022-02	2 2	1 1	2 2	1,71 6,1697	22 20	21,9561 19,9601	0,4391 2,7774	5,4962 5,1145	0,0779 0,3091	1,2744 1,3417	1,1889 1,2529	1,0708 1,0716	1,0615 1,0728	26,0597 37,9701	96,5359 98,3361
2022-02	2	2	2	8,6389	5	4,99	7,4052	3,4126	1,7312	1,5974	1,5419	1,0710	1,1005	207,5626	99,1764
2022-15	2	2	2	9,2126	9	8,982	4,8099	4,1563	1,0257	1,4877	1,383	1,0856	1,0946	108,471	98,9571
2022-24	2	3	2	1,515	32	32	0,36	6,0891	0,0473	1,1773	1	1,0434	1	19,5635	95,8174
2022-25	2	3	2	0,8154	17	16,9661	0,3493	5,5856	0,0481	1,3386	1	1,0671	1	16,4642	94,8635
2020-01	3	1	1	27,1676	3	2,994	27,1038	1,9272	9,074	1,5116	1,4286	1,103	1,0972	23,9154	99,8219
2020-02 2020-14	3	1 2	1 1	27,9309 30,0961	1 11	0,998 10,978	27,9309 22,8983	1,6761 4,1338	27,9868 2,7415	1,6761 1,5762	1,6761 1,3793	1,0825 1,0941	1,0825 1,1229	 51 500	99,8718 99,4279
2020-14	3	2	1	26,0409	8	7,984	24,3715	4,8043	3,2616	1,7702	1,6208	1,0941	1,1143	51,599 20,001	99,4279
2020-13	3	3	1	6,0443	1	0,998	6,0443	1,716	6,0564	1,716	1,716	1,0984	1,0984	-	99,7074
2020-25	3	3	1	8,9521	2	1,996	8,8523	1,8497	4,485	1,5153	1,5153	1,0886	1,0886	136,4001	99,7153
2022-01	3	1	2	30,2373	4	3,992	28,9988	2,4723	7,5745	1,4772	1,3078	1,0769	1,0676	14,6391	99,732
2022-02	3	1	2	22,1654	3	2,994	21,3281	2,79	7,4033	1,6875	1,3889	1,0917	1,0732	37,4433	99,6192
2022-14 2022-15	3	2 2	2 2	37,3207 19,0224	7 13	6,986	32,7997	4,5286	5,3422	1,8013	1,6639	1,1167	1,1071	52,2194	99,4216
2022-15 2022-24	3	3	2	6,2095	13	12,974 1	10,7896 6,2095	5,5961 1,6533	1,4662 6,2095	1,7535 1,6533	1,5556 1,6533	1,1114 1,0913	1,122 1,0913	44,5474	98,9438 99,7364
2022-24	3	3	2	9,2395	2	1,996	9,0958	1,8851	4,629	1,5484	1,5484	1,0913	1,0913	132,2309	99,7304
2020-01	4	1	1	10,2096	19	18,9621	9,3926	2,9578	0,5384	1,244	1,1429	1,08	1,0504	60,8245	99,3857
2020-02	4	1	1	8,21	3	2,994	7,186	2,4861	2,7421	1,5902	1,4667	1,1053	1,1361	138,5677	99,4797
2020-14	4	2	1	3,7586	30	29,9401	1,018	7,1105	0,1255	1,4042	1,2322	1,0826	1,0631	26,9149	96,8278
2020-15	4	2	1	3,7932	21	20,9581	1,6267	5,6282	0,181	1,3595	1,2222	1,08	1,0671	38,4213	97,6133
2020-24 2020-25	4	3	1 1	0,0605 2,9929	6 13	5,988 12,974	0,0103 2,5434	2,44 5,2219	0,0101 0,2307	1 1,455	1	1,0049 1,0736	1	101,9752 28,3192	93,8038 97,5432
2020-23	4	1	2	9,8216	14	13,972	7,7328	4,7834	0,2307	1,3209	1,0345	1,0488	1,0222	56,6473	98,789
2022-02	4	1	2	9,3298	39	38,9221	1,8803	8,0163	0,2397	1,412	1,2	1,0806	1,0535	30,3738	97,6958
2022-14	4	2	2	-	-	-		-	-	-	-		-	-	-
2022-15	4	2	2	-	-	-	-	-	-	-	-	-	-	-	-
2022-24	4	3	2	0,3473	11	11	0,1713	3,5339	0,0316	1,1742	1,0345	1,054	1,0222	96,781	95,621
2022-25 2020-01	5	3	2	1,7784 5,1017	3 28	2,994 27,9441	1,3992 1,8533	3,221 6,6402	0,594 0,1826	2,0401 1,5188	1,9831 1,288	1,1584 1,1108	1,1436 1,0858	89,9696 20,3559	98,3236 97,4898
2020-01	5	1	1	0,5589	2	1,996	0,519	1,8	0,1820	1,3836	1,3836	1,0866	1,0866	571,1059	98,914
2020-14	5	2	1	21,52	18	17,9641	5,283	5,9978	1,198	1,5426	1,3225	1,0898	1,0684	39,8345	98,9211
2020-15	5	2	1	7,6107	12	11,976	4,4914	4,8264	0,6355	1,4987	1,279	1,0925	1,0745	96,9055	98,6076
2020-24	5	3	1	2,8638	8	7,984	2,7849	2,5251	0,3587	1,1431	1	1,0212	1	61,386	99,0938
2020-25	5	3	1	4,9632	11	10,978	4,0849	3,0022	0,4521	1,2159	1,0345	1,0452	1,0222	31,2638	99,0961
2022-01 2022-02	5 5	1 1	2 2	6,7695 24,0169	35 32	34,9301 31,9361	1,0512 8,5124	8,1324 7,7475	0,1938 0,752	1,479 1,5012	1,25 1,2838	1,0998 1,0913	1,0745 1,0785	34,0951 29,6877	97,2502 98,6205
2022-02	5	2	2	34,1791	14	13,972	22,3124	4,8531	2,4463	1,6014	1,4728	1,1004	1,116	13,8614	99,3401
2022-15	5	2	2	29,4913	5	4,99	26,6571	5,2298	5,9101	2,3015	1,6866	1,1568	1,1905	83,3874	99,2199
2022-24	5	3	2	2,1828	10	10	2,0528	2,8277	0,2183	1,1613	1	1,0324	1	27,6855	98,7523
2022-25	5	3	2	2,3962	13	12,974	1,4671	4,4548	0,1847	1,4784	1,4219	1,1004	1,1038	21,1365	97,7552
2020-01	6	1	1	1,8476	34	33,9321	0,2834	6,9084	0,0545	1,2285	1,0345	1,0548	1,0222	18,9203	95,6112
2020-02 2020-14	6 6	1 2	1 1	0,4491 2,4449	1 13	0,998 12,974	0,4491 0,479	1,6296 4,4618	0,45 0,1884	1,6296 1,3019	1,6296 1,1667	1,1176 1,0688	1,1176 1,0504	69,8249	99,0412 97,7671
2020-14	6	2	1	0,7553	3	2,994	0,6954	2,7586	0,1884	1,6303	1,5556	1,112	1,1442	12,549	97,7671
2020-24	6	3	1	1,1666	30	29,9401	0,655	5,5438	0,039	1,1691	1	1,0465	1	19,4725	95,7428
2020-25	6	3	1	0,5308	12	11,976	0,1996	4,9452	0,0443	1,3714	1,0517	1,0805	1,0242	34,8163	94,5101
2022-01	6	1	2	3,6181	45	44,9101	0,7445	8,3806	0,0806	1,3169	1,25	1,0716	1,0667	22,2419	96,1012
2022-02	6	1	2	9,4715	31	30,9381	2,3473	8,4263	0,3061	1,5744	1,3906	1,104	1,0925	26,1925	97,5781
2022-14 2022-15	6	2 2	2 2	0,7275	1	0,998	0,7275	1,2865	0,729	1,2865	1,2865	1,057	1,057	-	99,6599
2022-13	6	3	2	1,0009	16	16	0,7273	5,1045	0,0626	1,3275	1,1928	1,077	1,057	83,3363	95,8369
2022-25	6	3	2	0,8004	12	11,976	0,3693	4,6167	0,0668	1,3579	1,1839	1,0824	1,0584	14,7024	95,8953
2020-01	7	1	1	38,1489	1	0,998	38,1489	2,0873	38,2252	2,0873	2,0873	1,1146	1,1146	-	99,8238
2020-02	7	1	1	-	-	-	-	-	-	-	-	-	-	-	-
2020-14	7	2	1	-	-	-	-	-	-	-	-	-	-	-	-
2020-15 2020-24	7 7	2 3	1 1	83,5397	2	1,996	81,8322	1,3984	41,8535	1,2236	1,2236	1,0354	1,0354	77,4726	99,9564
2020-24	7	3	1	66,0206	1	0,998	66,0206	1,1666	66,1527	1,1666	1,1666	1,0334	1,0334	- 1,7120	99,9304
2022-01	7	1	2	34,5969	1	0,998	34,5969	2,3778	34,6661	2,3778	2,3778	1,1359	1,1359	-	99,7655
2022-02	7	1	2	6,0828	11	10,978	2,1966	4,083	0,5541	1,3897	1,1846	1,072	1,051	26,8884	98,7455
2022-14	7	2	2	0,5932	5	4,99	0,2495	2,3806	0,1189	1,2052	1,2	1,0589	1,0466	218,5898	98,1761
2022-15	7	2	2	4,2949	3	2,994	3,3229	2,306	1,4345	1,4877	1,4855	1,0896	1,0896	680,3631	99,3672
2022-24 2022-25	7	3	2	83,8295 64,2441	5	5 0,998	81,6328 64,2441	1,5093 1,1389	16,7659 64,3727	1,1497 1,1389	1,1765 1,1389	1,0329 1,0195	1,0367 1,0195	27,8328	99,9443 99,9827
emostrativo	os de las va and Covera = Bos = Veg = Agr = Cul = Pas = Suc = Cor	riables em ge of Lan- sque getación In ua ltivos tos y Arbu elo Descub nstrucción	npleadas en d (LUCL) d nundable ustos pierto	el análisis y						ibuídas en dos ano ada uso de suelo so			de suelo. Esta tal	ola fue creada para f	ines
2 3 Año, donde:	= Río = Río	Napo Payamin	o												
2	= 202														

= 2020 = 2022

Tabla 4.3. Base de datos para el análisis de correlación y regresiones lineales

(Escala 10 k – Métricas del paisaje para cuerpos de agua)

AÑO	ID	R_PLAND	R_NP	R_PD	R_LPI	R_LSI	R_A_MN	R_SH_MN	R_SH_MD	R_FR_MN	R_FR_MD	R_PAFR	R_ENN_MN	R_AI
	2020_01 2020_02	2,4784 2,5477	154 71	1,5377 0,7082	0,9559 0,8324	20,0949 14,2188	1,6118 3,5973	1,5954 1,6146	1,3333 1,2	1,0939 1,0881	1,0937 1,0745	1,3624 1,3684	52,904 41,4552	87,7671 91,667
	2020_02	0,9036	47	0,7082	0,8324	11,1257	1,9274	1,5964	1,2	1,0919	1,0743	1,3064	72,3409	89,2118
	2020_03	0,9417	104	1,0375	0,455	14,3077	0,9076	1,5329	1,3333	1,0991	1,0946	1,3514	37,8125	86,1104
	2020_05	0,7539	125	1,247	0,2659	15,0345	0,6046	1,4688	1,25	1,0879	1,0806	1,3706	98,6837	83,6546
	2020_06	0,8255	165	1,6481	0,09	17,4121	0,5009	1,4478	1,25	1,0862	1,0745	1,3593	49,367	81,7287
	2020_07	0,4197	51	0,5089	0,105	8,8462	0,8247	1,4235	1,2727	1,0849	1,0754	1,2575	376,5989	87,6841
	2020_08 2020_09	0,9912 2,3573	50 37	0,4985	0,4382 1,9152	8,06 9,5519	1,9884 6,3905	1,4614 1,5424	1,25 1,1176	1,086 1,0712	1,0777 1,0504	1,2941 1,3485	157,8876 301,1415	92,8267 94,3936
	2020_09	2,0101	57	0,5683	1,1391	15	3,5368	1,8718	1,3333	1,1053	1,1009	1,3483	128,3321	90,0689
	2020_10	1,6473	26	0,2592	0,7302	10,7209	6,3542	1,8485	1,1667	1,0978	1,0675	1,3861	355,9863	92,3499
	2020 12	9,0714	65	0,6487	8,2081	12,7363	13,9835	1,5769	1,2	1,0861	1,0634	1,3403	111,872	96,094
	2020_13	8,0568	61	0,6082	7,5931	8,0527	13,2472	1,3887	1,2	1,0719	1,0605	1,289	135,872	97,5082
	2020_14	10,8105	39	0,3888	10,7056	9,654	27,8026	1,4841	1,2381	1,073	1,0567	1,3165	211,3066	97,3622
	2020_15	10,6865	98	0,977	9,9771	11,6763	10,9377	1,4899	1,2679	1,0907	1,0855	1,3185	66,3413	96,728
	2020_16 2020_17	11,2342 9,5591	58 59	0,5788 0,5882	9,3146 9,1556	12,4018 8,1823	19,4095 16,2519	1,728 1,578	1,2842 1,2857	1,0948 1,1078	1,0738 1,1287	1,3762 1,3472	109,4774 89,6007	96,5867 97,6704
	2020_17	8,3611	42	0,4187	8,0205	8,5397	19,9695	1,6197	1,3875	1,0996	1,1075	1,2878	62,4333	97,384
	2020_19	5,1684	22	0,2191	4,1896	6,6754	23,5886	1,5421	1	1,0676	1,0222	1,2594	221,9441	97,4955
	2020_20	2,972	46	0,4585	1,7018	7,5925	6,4813	1,4516	1,25	1,0798	1,079	1,2448	151,4901	96,1523
	2020_21	1,7638	2	0,0199	1,7637	3,9438	88,465	2,4682	2,4682	1,0955	1,0955		20	97,7619
0	2020_22 2020_23	8,5913 7,1589	41 37	0,4087 0,3692	8,2755 6,9991	7,8861 8,0746	21,0217 19,3927	1,5876 1,5092	1,2857	1,0948 1,0797	1,0821 1,0637	1,2996 1,3248	69,6751 39,8043	97,6431 97,3477
2020	2020_23	10,6024	28	0,3092	10,5762	8,3798	37,9918	1,4676	1,25	1,0689	1,0303	1,3576	112,0441	97,728
(4	2020 25	8,7015	72	0,7177	8,3015	7,8579	12,1249	1,6001	1,303	1,1088	1,1287	1,3587	62,9277	97,6708
	2020 26	3,9269	51	0,5085	2,2245	7,796	7,7222	1,4054	1,2	1,0709	1,0745	1,2979	40,1456	96,5573
	2020_27	1,0893	65	0,6488	0,6624	9,89	1,6791	1,528	1,2222	1,0894	1,0624	1,3742	93,7526	91,4057
	2020_28	2,1631	65	0,6481	1,7786	10,5864	3,3374	1,509	1	1,0807	1,0504	1,4029	45,0918	93,4371
	2020_29	0,5841	63	0,6282	0,2523	8,1948	0,9298	1,4431	1,25	1,0902	1,0946	1,3099	174,3038	90,4169
	2020_30 2020_31	4,9229 2,0395	78 61	0,7786 0,6083	3,1584 0,4387	12,6629 15,6655	6,3229 3,3528	1,5124 1,95	1 1,5625	1,0753 1,1207	1,0222 1,1218	1,3562 1,3606	48,1378 49,1466	94,7145 89,6373
	2020_31	2,0395 3,4475	53	0,5291	3,0724	11,3468	6,5158	1,4966	1,5625	1,0709	1,1218	1,3948	109,1234	94,3971
	2020_32	1,7029	66	0,657	0,8946	13,0458	2,5921	1,8531	1,5769	1,1246	1,1308	1,3747	113,1136	90,7051
	2020_34	0,6898	7	0,0697	0,6651	5,2335	9,8986	2,069	1,8	1,1477	1,1445		37,1815	94,836
	2020_35	4,4058	29	0,2887	4,2462	11,3919	15,2593	1,8195	1,25	1,1001	1,0745	1,4172	55,74	95,0331
	2020_36	5,1546	96	0,9568	4,1186	15,9055	5,3873	1,6839	1,3095	1,1014	1,0946	1,4236	56,9048	93,4143
	2020_37	4,0819	46 22	0,4581	3,7729	10,963	8,9104	1,5518	1,2083	1,0798	1,0732	1,3616	50,6452	95,0534
	2020_38 2020_39	0,6565 1,896	61	0,2189 0,6081	0,5732 1,455	6,184 9,7935	2,9991 3,1179	1,6325 1,5131	1,2923 1,25	1,0956 1,0833	1,0761 1,0854	1,3696 1,3308	161,7793 136,884	93,5165 93,5729
	2020_39	4,1628	65	0,6474	2,1788	14,8166	6,4295	1,6994	1,4	1,0918	1,0917	1,3341	44,9724	93,2059
	2020 41	1,2572	16	0,1594	0,7523	7,0756	7,8894	2,0421	1,8875	1,1374	1,1425	1,2965	346,0943	94,5366
	2020_42	3,1148	71	0,7072	1,2667	14,4181	4,4042	1,8568	1,5	1,1223	1,1252	1,3737	83,6131	92,3616
	2020_43	1,3193	26	0,259	0,4593	12,6147	5,0946	2,2158	1,4306	1,1143	1,0838	1,4185	44,1494	89,7833
	2020_44	1,729	32	0,3191	0,6324	8,6174	5,4184	1,5813	1,3095	1,0866	1,0945	1,3086	175,0821	94,1564
	2020_45 2020_46	1,1361 2,5193	46 89	0,4582 0,8875	0,2689 0,7867	15,3458 13,3616	2,4796 2,8387	1,9476 1,5222	1,4643 1,3333	1,1143 1,087	1,1023 1,0838	1,4152 1,2843	69,2442 91,5482	86,4147 92,1709
	2022 01	4,8062	115	1,1489	3,5178	16,0524	4,1835	1,497	1,2	1,0797	1,0646	1,3329	57,1343	93,1009
	2022 02	4,7909	48	0,479	2,5797	10,9476	10,001	1,6803	1,303	1,0953	1,0826	1,336	99,8477	95,4306
	2022_03	1,0235	30	0,2994	0,8795	7,4581	3,4183	1,5245	1,2775	1,0837	1,0739	1,2986	200,0701	93,5441
	2022_04	1,9803	30	0,2994	1,8259	8,8121	6,6143	1,6607	1,375	1,102	1,1261	1,3524	49,3695	94,4092
	2022_05	2,0758 3,407	65	0,6489 0,4995	1,0955 3,0148	10,6436 10,0595	3,1991	1,5183	1,25	1,0919	1,0745 1,079	1,3425	53,1426	93,2517
	2022_06 2022_07	1,0427	50 65	0,6489	0,441	9,9561	6,8206 1,6069	1,5321 1,4241	1,3095 1,2727	1,0855 1,082	1,0854	1,3238 1,2387	78,0755 243,4987	95,0587 91,124
	2022_07	1,8977	53	0,5285	0,6336	8,9275	3,5908	1,4895	1,2727	1,083	1,0745	1,2816	88,6436	94,2095
	2022 09	2,8836	44	0,4389	2,768	8,4135	6,5707	1,4689	1,2679	1,0908	1,0787	1,3348	260,4769	95,602
	2022_10	2,3285	30	0,299	1,35	14,3922	7,7873	2,2226	1,4722	1,1311	1,1372	1,4248	248,0558	91,1715
	2022_11	4,8062	115	1,1489	3,5178	16,0524	4,1835	1,497	1,2	1,0797	1,0646	1,3329	57,1343	93,1009
	2022_12	8,604	109	1,088	7,8265	14,4184	7,9078	1,4428	1,2	1,0756	1,0618	1,3112	83,5582	95,4075
	2022_13 2022_14	7,5477 9,4859	33 65	0,3291 0,6485	7,3813 9,0636	7,8784 9,872	22,9309 14,6285	1,453 1,413	1 1,0833	1,0643 1,0692	1,0294 1,0504	1,3209 1,3119	135,6615 158,5041	97,4866 97,1122
	2022_14	12,2138	49	0,4889	11,78	10,7971	24,9802	1,5664	1,0833	1,0893	1,0846	1,3119	99,5917	97,1122
	2022_16	10,9965	116	1,1588	10,6961	11,738	9,4892	1,4261	1	1,0793	1,043	1,398	99,1075	96,7515
	2022_17	7,8639	82	0,8184	7,7106	8,9431	9,6093	1,4294	1,1	1,0846	1,0605	1,3647	94,0916	97,1572
	2022_18	11,5525	11	0,1098	11,503	5,3495	105,2327	1,5289	1	1,062	1	1,2528	125,1884	98,7168
	2022_19	7,1372	4	0,0399	6,7434	3,3825	178,965	1,807	1,6591	1,0751	1,0821	-	1106,4164	99,1047
	2022_20 2022_21	4,9639 2,6056	4 1	0,0399 0,01	4,7279 2,6056	3,2886 1,6111	124,345 261,08	1,6666 1,6111	1,3503 1,6111	1,0764 1,0649	1,0567 1,0649		1377,0194	98,967 99,6184
	2022_21	2,6056 8,9267	53	0,5289	8,6037	8,5359	16,8766	1,6211	1,0111	1,0649	1,0634	1,3751	54,8144	97,4682
55	2022_22	7,9267	55	0,5495	7,8232	8,5089	14,4265	1,4839	1	1,0778	1,0294	1,4143	32,8072	97,3218
2022	2022 24	10,8686	44	0,4391	10,8074	7,351	24,7507	1,3941	1,0357	1,0715	1,0504	1,3367	126,9798	98,0667
	2022_25	8,2835	38	0,3792	7,6152	7,8492	21,8424	1,61	1,2111	1,0864	1,0637	1,3459	79,7776	97,611
	2022_26	4,308	17	0,1695	4,2466	6,7308	25,4165	1,834	1,5714	1,1244	1,1146	1,3518	236,4946	97,2279
	2022_27	1,834	23	0,2295	1,6816	7,2721	7,9922	1,703	1,3333	1,1071	1,121	1,3365	110,8575	95,325
	2022_28 2022_29	2,7606 2,8018	35 87	0,3489 0,8679	2,4167 2,3366	8,9159 11,6101	7,9129 3,2282	1,5708 1,5733	1,2 1,3333	1,0832 1,1057	1,0637 1,0984	1,3427 1,366	49,7072 100,2936	95,2122 93,615
	2022_29	5,654	30	0,2993	5,5345	10,392	18,8917	1,5746	1,225	1,0769	1,0619	1,3567	64,4318	96,0309
	2022_31	2,2305	62	0,6178	0,8245	14,0067	3,6103	1,775	1,4143	1,1036	1,099	1,354	97,1291	91,2252
	2022 32	3,6882	47	0,4689	3,4434	10,3039	7,866	1,5909	1,3333	1,1004	1,1197	1,387	81,115	95,1302
	2022_33	1,5259	93	0,9268	0,9989	12,3024	1,6463	1,5768	1,4	1,105	1,1178	1,3509	88,8169	90,7717
	2022_34	0,7318	5	0,0498	0,6204	4,5465	14,702	2,1669	1,9286	1,1408	1,1335	1 2001	60,8492	95,8018
	2022_35 2022_36	4,5382 5,7437	32 59	0,319 0,5886	4,3995 2,4126	11,8244	14,2284 9,758	1,6832 2,1018	1,3125 1,5	1,0858 1,1265	1,086 1,1386	1,3801 1,4136	46,6755 61,0669	94,9004 93,6065
	2022_36	4,4345	33	0,3289	4,1298	16,2729 11,282	13,4812	1,7866	1,3333	1,1203	1,1386	1,4136	144,9142	95,1002
	2022_37	0,8917	26	0,3289	0,7554	7,6632	3,4442	1,8819	1,7841	1,1121	1,1654	1,3225	203,5541	92,8555
	2022 39	2,775	61	0,6085	2,355	9,9102	4,5602	1,4505	1,25	1,0811	1,0745	1,3453	264,1025	94,6184
	2022 40	5,0518	38	0,3787	3,0065	13,898	13,3395	1,9063	1,2917	1,1026	1,1031	1,3845	133,1855	94,2365
	2022_41	1,1047	28	0,279	0,2879	7,8673	3,9593	1,6886	1,4148	1,1086	1,1066	1,297	177,782	93,4019
	2022_42	3,4741	58	0,578	1,4155	14,7353	6,0109	1,924	1,3333	1,1111	1,0935	1,41	98,4022	92,5929
	2022_43 2022_44	1,6229 2,3414	25 15	0,2491 0,1496	0,7327 1,6224	8,8906 7,2606	6,5148 15,65	1,8913 1,9	1,5385 1,4286	1,1132 1,1089	1,1038 1,1176	1,315 1,2853	174,808 595,4963	93,7496 95,8793
	2022_44	0,9158	49	0,1496	0,2366	13,7656	1,8763	1,8726	1,4286	1,1235	1,1176	1,2855	130,0798	86,53
					0,2000	,/0.00	6,3567	1,0720	4,0/17	1,0761	1,0504	1,3807		

NOTA:

Los datos son parte de una misma base de datos, sin embargo para efectos de visualización se dividieron según los usos de suelo.

Los usos de suelo: Suelo bsocoso, suelo natural no boscoso y suelo agrícola fueron omitidos en esta base de datos debido a las hipotesis de investigeión planteadas.

La tabla consta de 92 entradas (46 muestras para cada año 2020, 2022)

Tabla 4.4. Base de datos para el análisis de correlación y regresiones lineales

(Escala 10 k – Métricas del paisaje para el uso de suelo urbano)

AÑO	ID	U_PLAND	U_NP	U_PD	U_LPI	U_LSI	U_A_MN	U_SH_MN	U_SH_MD	U_FR_MN	U_FR_MD	U_PAFR	U_ENN_MN	U_AI
	2020_01	2,5009	554	5,5316	0,365	27,9527	0,4521	1,3385	1,2	1,0729	1,0576	1,312	59,4066	82,8354
	2020_02 2020_03	3,2088 2,6797	806 477	8,0398 4,758	0,1788 0,2794	33,7047 26,1098	0,3991 0,5632	1,3331 1,3369	1,2 1,1818	1,0739 1,0711	1,0634 1,0567	1,2881 1,2676	64,7747 71,4785	81,6487 84,5768
	2020_03	1,1927	305	3,0428	0,0972	21,6027	0,392	1,3499	1,2	1,0742	1,0634	1,2962	98,5193	80,9548
	2020_05	2,6035	604	6,0256	0,0964	30,6914	0,4321	1,348	1,2	1,0743	1,062	1,2834	80,1341	81,4536
	2020_06	4,4929	828 777	8,2705	0,2959	34,8588	0,5432	1,3503	1,2	1,074	1,0634	1,2891	65,014	83,9284 82,5499
	2020_07 2020_08	3,6765 9,7236	1316	7,7531 13,1203	0,1144 1,274	34,3125 39,7008	0,4742 0,7411	1,3572 1,3351	1,2 1,1292	1,0746 1,0695	1,0616 1,0504	1,2978 1,2993	64,469 47,0681	87,5599
	2020_00	6,9345	995	9,9198	0,2867	38,6212	0,6991	1,3749	1,25	1,0755	1,0637	1,2642	61,0201	85,6665
	2020_10	0,4679	236	2,3531	0,0451	18,0217	0,1989	1,2968	1,1292	1,0715	1,0504	1,3091	124,8293	74,5999
	2020_11 2020_12	2,6392	625	6,2317 8,5831	0,1718	31,0552	0,4235 2,307	1,3782	1,2143 1,0955	1,0788	1,0634	1,3083 1,2942	64,8109 50,991	81,3776
	2020_12	19,8012 6,851	860 1028	10,2495	10,05 0,5486	23,5163 36,0419	0,6684	1,3248 1,3364	1,0955	1,0672 1,0721	1,0504 1,0631	1,2942	53,5692	94,9327 86,562
	2020_14	4,6024	478	4,7657	0,5614	23,8442	0,9657	1,3374	1,2222	1,0723	1,062	1,2127	97,8447	89,3105
	2020_15	3,8671	417	4,1574	0,4489	20,8325	0,9302	1,3288	1,2 1,2	1,072	1,057	1,2166	101,1596	89,8759
	2020_16	3,4634	457	4,5606	0,4402 0,2503	22,7051	0,7594	1,3414		1,0735 1,0768	1,0605	1,2392	96,8488 98,3157	88,2733
	2020_17 2020_18	3,3797 4,6983	416 805	4,1472 8,0249	0,2303	22,7778 33,1287	0,8149 0,5855	1,3782 1,3343	1,25 1,2	1,0768	1,0633 1,0618	1,2346 1,2411	73,5571	88,083 85,1042
	2020_19	2,887	302	3,0077	0,2236	20,0821	0,9599	1,4003	1,2667	1,0855	1,0745	1,2094	89,3131	88,71
	2020_20	4,8154	710	7,0776	0,5831	28,0773	0,6804	1,2612	1,1744	1,0603	1,0516	1,198	83,1015	87,6118
	2020_21 2020_22	1,9249 4,5043	184 587	1,8343 5,8512	0,1226 0,5456	16,2842 27,3991	1,0494 0,7698	1,3679 1,3234	1,2857 1,1667	1,0774 1,0676	1,0654 1,0536	1,1754 1,2684	161,278 83,9543	88,9176 87,4975
0	2020_22	3,7311	565	5,6371	0,2141	27,2196	0,6619	1,3254	1,2143	1,0695	1,0617	1,2181	86,0845	86,3625
2020	2020_24	2,524	324	3,2293	0,1781	18	0,7816	1,2942	1,2	1,0676	1,0619	1,194	119,1299	89,2249
	2020_25	2,1305	315	3,1397	0,1409	19,7747	0,6786	1,3537	1,25	1,0774	1,0634	1,2102	110,4453	87,0434
	2020_26 2020_27	4,7493 1,6731	854 446	8,5153 4,4516	0,406 0,2147	33,6201 24,4363	0,5577 0,3759	1,3299 1,3075	1,2 1,1791	1,0725 1,0706	1,0634 1,0618	1,2541 1,2679	69,9661 98,8997	84,967 81,7537
	2020_27	3,5806	641	6,3917	0,2147	28,8654	0,5602	1,3073	1,1791	1,069	1,0556	1,2679	78,5748	85,2163
	2020_29	3,9926	721	7,1895	0,1223	33,0449	0,5553	1,3667	1,2222	1,0761	1,0634	1,2672	74,17	83,8728
	2020_30	2,9409	707	7,057	0,1965	31,4157	0,4167	1,351	1,2	1,0765	1,0637	1,2874	66,8694	82,1396
	2020_31 2020_32	3,3889 2,5495	815 667	8,1271 6,6586	0,1509 0,1276	33,9783 30,3875	0,417 0,3829	1,3216 1,3288	1,2 1,1667	1,0716 1,0727	1,0634 1,0567	1,2573 1,2812	80,3303 77,1235	81,9983 81,4729
	2020_32	1,1401	369	3,673	0,1276	20,9721	0,3829	1,2696	1,1667	1,0673	1,0567	1,2479	120,6591	81,0779
	2020_34	2,8528	538	5,3561	0,1461	27,3481	0,5326	1,3557	1,245	1,0765	1,068	1,2589	77,6036	84,3218
	2020_35	3,0858	989	9,8468	0,138	36,0992	0,3134	1,3017	1,1429	1,069	1,0504	1,2821	53,7534	79,8978
	2020_36 2020_37	2,6179 2,73	1014 878	10,1064 8,7437	0,2063 0,1574	35,1262 33,6687	0,259 0,3122	1,3004 1,3227	1,1181 1,1667	1,0708 1,0738	1,0504 1,0504	1,3146 1,3117	49,6186 57,788	78,7557 80,0969
	2020_37	3,192	437	4,3482	0,1374	22,9526	0,7341	1,304	1,1667	1,0654	1,0504	1,2384	74,0551	87,6475
	2020_39	4,0668	792	7,8956	0,4777	31,3193	0,5151	1,3327	1,2	1,0738	1,0634	1,2651	70,8028	84,9121
	2020_40	6,4633	970	9,6618	1,0931	36,4667	0,6689	1,3694	1,1667	1,0757	1,0514	1,3234	52,3098	86,0071
	2020_41 2020_42	5,4216 3,7352	952 811	9,4817 8,0784	0,2524 0,3884	36,5246 34,5593	0,5718 0,4624	1,3453 1,358	1,1818 1,1818	1,0722 1,0748	1,0535 1,0618	1,2732 1,3089	62,6476 58,0226	84,696 82,5474
	2020_42	3,8545	630	6,275	0,5074	28,2893	0,6143	1,3132	1,1667	1,0674	1,0507	1,2479	83,7826	86,0371
	2020_44	4,6898	711	7,0897	0,4194	32,7442	0,6615	1,3766	1,2	1,0761	1,0634	1,3	66,2725	85,2857
	2020_45 2020_46	16,8357	870	8,6658	11,7368	30,2029	1,9428	1,3322	1,1623	1,0686	1,0514	1,3017	58,6011	92,8729
	2020_40	6,1962 3,6785	1372 393	13,6814 3,9261	0,3097	42,9058 22,487	0,4529	1,3229 1,3812	1,1667 1,2308	1,0708	1,0507	1,2942 1,2612	49,8212 85,1743	83,1056 88,7374
	2022 02	11,3368	621	6,1976	5,9834	24,5526	1,8292	1,3291	1,2	1,0684	1,0567	1,2412	78,1208	92,9815
	2022_03	5,4532	668	6,6671	0,2606	31,6047	0,8179	1,3698	1,2222	1,0743	1,0652	1,2471	79,0482	86,8362
	2022_04 2022_05	10,0397 6,7529	734 802	7,3253 8,0063	1,9065 0,3576	31,8709 34,9539	1,3705 0,8435	1,3507 1,3541	1,2 1,2083	1,0694 1,0706	1,0618 1,0618	1,249 1,2531	66,6312 72,435	90,2259 86,8738
	2022_05	16,3106	1174	11,7286	1,996	42,0803	1,3907	1,3619	1,1667	1,0673	1,0523	1,276	54,4745	89,7968
	2022_07	17,7265	1236	12,3393	1,9705	41,8873	1,4366	1,3709	1,2	1,0703	1,0581	1,2798	47,2383	90,2711
	2022_08	19,4556	1298	12,9432	1,4197	44,2636	1,5032	1,3666	1,1429	1,0671	1,0504	1,2908	46,0106	90,1768
	2022_09 2022_10	11,458 2,1722	1279 331	12,7567 3,2991	0,5995 0,2847	47,3717 20,2027	0,8982 0,6584	1,4316 1,3061	1,25 1,2	1,08 1,0685	1,0738 1,0566	1,296 1,2115	50,9157 116,3692	86,2755 86,8706
	2022_10	3,6785	393	3,9261	0,4289	22,487	0,9369	1,3812	1,2308	1,0769	1,0637	1,2612	85,1743	88,7374
	2022_12	24,4218	801	7,9956	11,6518	27,7303	3,0544	1,3714	1,1667	1,0683	1,0504	1,2734	52,3694	94,5809
	2022_13	8,5778	943	9,4057	0,7379	38,2164	0,912	1,398	1,2105	1,0767	1,0618	1,2827 1,2581	57,6079	87,2553
	2022_14 2022_15	5,9539 3,7659	642 296	6,4048 2,9536	0,5494 0,5533	28,8732 18,964	0,9296 1,275	1,3699 1,3254	1,2042 1,2	1,0733 1,0668	1,0633 1,0544	1,2381	78,4851 124,6059	88,534 90,6942
	2022_16	3,4901	368	3,6763	0,4951	20,992	0,9493	1,3333	1,2	1,0703	1,0582	1,2191	106,7886	89,2414
	2022_17	3,8156	306	3,0539	0,188	19,1199	1,2494	1,3667	1,25	1,0766	1,0683	1,2024	111,1341	90,6628
	2022_18 2022_19	2,8273 0,7805	328	3,2734 0,7976	0,1485	22,0593	0,8637	1,366	1,2527	1,0744 1,0586	1,0686	1,2264 1,1535	115,1269	87,3995 90,949
	2022_19	1,0109	80 59	0,7976	0,1392 0,2574	8,9153 7,6634	0,9785 1,7168	1,248 1,2906	1,1742 1,2308	1,0586	1,0488 1,0634	1,1138	284,1556 317,0589	90,949
	2022_21	0,7643	39	0,3892	0,1942	7,0227	1,9636	1,3175	1,2308	1,0658	1,0602	1,1641	416,4636	92,9987
	2022_22	2,8947	148	1,477	0,4812	12,3988	1,9598	1,3094	1,2	1,0653	1,0531	1,1752	144,9146	93,2598
2022	2022_23	3,2805	192	1,9181	0,8054	14,9725	1,7103	1,3402	1,2198	1,0697	1,0616	1,211	124,3901	92,2343
2	2022_24 2022_25	3,1171 3,3989	158 182	1,5768 1,8164	0,2954 0,6616	13,1582 14,2649	1,9768 1,8713	1,3492 1,3579	1,2632 1,25	1,071 1,0717	1,0636 1,0608	1,174 1,1938	188,6985 152,603	93,0706 92,7551
	2022_26	5,7621	726	7,2385	0,4	31,4719	0,796	1,3453	1,2222	1,0711	1,0614	1,2361	76,3112	87,2662
	2022_27	3,8562	600	5,9864	0,1648	29,0431	0,6442	1,3206	1,2	1,0684	1,0567	1,2437	88,5681	85,6331
	2022_28 2022_29	5,0397 4,4657	578 938	5,7614 9,3576	0,1783 0,845	28,4 33,3278	0,8747 0,4772	1,3416 1,3341	1,2	1,0701	1,0595 1,0504	1,2191 1,3068	96,2324 53,6409	87,7521
	2022_29	5,7628	663	6,6142	0,845	30,1372	0,4772	1,3341	1,1429 1,2222	1,0724 1,0716	1,0612	1,2288	81,2565	84,6169 87,8182
	2022_31	7,4594	844	8,4103	0,2779	33,5639	0,8869	1,3526	1,2222	1,0734	1,0634	1,2405	72,9392	88,037
	2022_32	5,9111	566	5,6466	0,2304	28,4949	1,0469	1,393	1,2426	1,0762	1,0637	1,2391	77,1147	88,6542
	2022_33 2022_34	3,8357 8,6963	457 878	4,5543 8,741	0,2578 0,6278	23,9364 32,8243	0,8422 0,9949	1,3217 1,3534	1,2 1,2222	1,0693 1,0728	1,061 1,0634	1,2161 1,2388	96,7788 61,9225	88,2301 89,1793
	2022_34	4,9204	917	9,14	0,6278	38,3978	0,5383	1,3534	1,2222	1,0728	1,0634	1,2388	61,4121	83,068
	2022_36	6,0395	1203	12,0019	0,4773	38,8621	0,5032	1,3337	1,1429	1,0707	1,0504	1,3145	54,7933	84,5197
	2022_37	6,1069	1097	10,9348	1,3255	35,0464	0,5585	1,337	1,2	1,0752	1,0634	1,2843	62,3429	86,1623
	2022_38 2022_39	2,792	389	3,8736	0,6027	22,2179	0,7208	1,3227	1,0833 1,2222	1,0672	1,0504	1,2983	65,2991	87,2486
	2022_39	4,2306 21,5516	378 1149	3,771 11,4511	0,8483 10,3048	21,75 36,0387	1,1219 1,8821	1,3222 1,3351	1,2222	1,0682 1,069	1,0626 1,0504	1,2062 1,3218	111,4178 39,1747	89,8711 92,4413
	2022 41	19,5353	743	7,4038	9,3734	21,7731	2,6385	1,307	1,1538	1,0668	1,0504	1,2622	49,9944	95,2953
	2022_42	5,4096	745	7,4238	1,675	25,9936	0,7287	1,3251	1,1667	1,0733	1,0518	1,2856	56,6667	89,2265
	2022_43 2022_44	33,4678 18,1433	330 404	3,2882 4,0296	20,2961 5,5168	16,4147 20,0211	10,1783 4,5025	1,354 1,3546	1,2 1,1667	1,0692 1,0671	1,0541 1,0552	1,2519 1,2531	62,8383 80,7039	97,3336 95,5297
	2022_44	34,7211	580	5,7772	12,9237	22,4141	6,01	1,3346	1,1667	1,0662	1,0532	1,2331	63,703	95,3297
	2022_46	7,529	1013	10,1015	0,6833	39,3745	0,7453	1,4007	1,2	1,0794	1,0634	1,3045	58,7373	85,9718
NOTA		parte de una misr												

NOTA:Los datos son parte de una misma base de datos, sin embargo para efectos de visualización se dividieron según los usos de suelo.

Los usos de suelo: Suelo bsocoso, suelo natural no boscoso y suelo agrícola fueron omitidos en esta base de datos debido a las hipotesis de investigeión planteadas.

La tabla consta de 92 entradas (46 muestras para cada año 2020, 2022)

Tabla 4.5. Base de datos para el análisis de correlación y regresiones lineales

(Escala 1 k – Métricas del paisaje para el uso de suelo correspondiente a agua)

AÑO	ID	A_PLAND	A_NP	A_PD	A_LPI	A_LSI	A_A_MN	A_SH_MN	A_SH_MD	A_FR_MN	A_FR_MD	A_ENN_MN	A_AI
	2020_01	27,1676	3	2,994	27,1038	1,9272	9,074	1,5116	1,4286	1,103	1,0972	23,9154	99,8219
	2020_02 2020_03	27,9309 61,1254	1 1	0,998 0,998	27,9309 61,1254	1,6761 2,5313	27,9868 61,2477	1,6761 2,5313	1,6761 2,5313	1,0825 1,1395	1,0825 1,1395		99,8718 99,804
	2020_03	37,8809	3	2,994	33,819	2,768	12,6522	2,5154	2,6538	1,1896	1,2225	21,0238	99,7124
	2020_04	37,8809	-	2,774	33,619	2,700	12,0322	2,3134	2,0336	1,1890	1,2223	21,0236	99,/124
	2020 06	33,2267	3	2,994	33,1415	1,6511	11,0977	1,3246	1,2292	1,066	1,0667	26,4811	99,8869
	2020 07	25,591	11	10,978	23,6372	4,0523	2,3311	1,7697	1,5556	1,1296	1,1442	33,3166	99,3959
	2020_08	36,8962	5	4,99	24,511	3,2835	7,394	1,5978	1,3704	1,0867	1,136	45,5413	99,6235
	2020 09	21,1698	8	7,984	19,6442	2,8134	2,6515	1,4147	1,311	1,0764	1,0766	39,3451	99,605
	2020_10	24,9095	1	0,998	24,9095	1,587	24,9593	1,587	1,587	1,0745	1,0745	-	99,8822
	2020_11	25,1913	3	2,994	23,4009	2,5791	8,4139	1,7573	1,7378	1,1228	1,1243	43,6682	99,685
	2020_12	14,5257	5	4,99	13,1395	4,5353	2,911	1,925	1,3687	1,118	1,0728	121,7072	99,0697
	2020_13	13,6723	3 11	2,994	10,4651	2,2848 4,1338	4,5666	1,5463	1,5838	1,1031	1,0894	117,6709	99,6516
	2020_14	30,0961 26,0409	8	10,978 7,984	22,8983 24,3715	4,1338	2,7415 3,2616	1,5762 1,7702	1,3793 1,6208	1,0941 1,11	1,1229 1,1143	51,599 20,001	99,4279 99,2535
	2020_15 2020_16	31,9258	1	0,998	31,9258	1,4099	31,9897	1,4099	1,4099	1,0543	1,0543	20,001	99,9273
	2020_17	21,3079	i	0,998	21,3079	1,8508	21,3505	1,8508	1,8508	1,1005	1,1005	-	99,8153
	2020_18	56,8349	i	0,998	56,8349	1,4079	56,9486	1,4079	1,4079	1,0517	1,0517	_	99,9458
50	2020_19	6,0691	2	1,996	6,0447	2,3988	3,0406	1,9178	1,9178	1,1578	1,1578	251	99,4295
2020	2020 20	42,8643	5	4,99	40,2828	2,3555	8,59	1,4089	1,348	1,0917	1,0722	93,9438	99,7928
	2020_21	13,4521	4	4	10,5905	3,6989	3,363	1,7889	1,6092	1,0944	1,0956	13,3009	99,2617
	2020_22	33,2967	5	4,99	20,4244	2,5692	6,6727	1,3926	1,2245	1,0682	1,0634	120,7586	99,7277
	2020_23	46,3983	1	0,998	46,3983	2,6261	46,4911	2,6261	2,6261	1,148	1,148	-	99,7611
	2020_24	6,0443	1	0,998	6,0443	1,716	6,0564	1,716	1,716	1,0984	1,0984	-	99,7074
	2020_25 2020_26	8,9521	2	1,996	8,8523	1,8497	4,485	1,5153 2,1009	1,5153	1,0886	1,0886	136,4001	99,7153
	2020_26 2020_27	14,1125 12,7545	1	0,998 0,998	14,1125 12,7545	2,1009 1,7776	14,1407 12,78	2,1009 1,7776	2,1009 1,7776	1,1254 1,0979	1,1254 1,0979	-	99,7061 99,7819
	2020_27	5,0439	1	0,998	5,0439	1,776	5,054	1,776	1,776	1,1045	1,1045	-	99,7819
	2020_28	8,866	1	0,998	8,866	2,464	8,8837	2,464	2,464	1,1585	1,1585		99,5064
	2020_29	5,9196	i	0,998	5,9196	1,7152	5,9314	1,7152	1,7152	1,0985	1,0985	-	99,7040
	2020_31	7,5419	i	0,998	7,5419	2,0855	7,557	2,0855	2,0855	1,1309	1,1309	_	99,6036
	2020 32	10,9655	1	0,998	10,9655	2,2821	10,9874	2,2821	2,2821	1,1422	1,1422	-	99,612
	2020_33	3,7076	1	0,998	3,7076	2,0311	3,715	2,0311	2,0311	1,1349	1,1349	-	99,461
	2020 34	1,9388	2	1,996	1,17	1,8817	0,9714	1,3326	1,3326	1,0631	1,0631	731	99,3623
	2020_35	6,2048	1	0,998	6,2048	2,6593	6,2172	2,6593	2,6593	1,1773	1,1773	-	99,3314
	2020_36	6,0988	1	0,998	6,0988	1,5697	6,111	1,5697	1,5697	1,082	1,082	-	99,7683
	2020_37	14,5587	1	0,998	14,5587	1,9463	14,5878	1,9463	1,9463	1,112	1,112	-	99,7515
	2020_38	3,8413	4	0,998	3,8413	1,9695	3,849	1,9695	1,9695	1,1287	1,1287	14 (201	99,5025
	2022_01 2022_02	30,2373 22,1654	3	3,992 2,994	28,9988 21,3281	2,4723 2,79	7,5745 7,4033	1,4772 1,6875	1,3078 1,3889	1,0769 1,0917	1,0676 1,0732	14,6391 37,4433	99,732 99,6192
	2022_02	36,2259	14	13,972	22,8762	3,956	2,5927	1,4193	1,1429	1,0699	1,0504	38,7487	99,5085
	2022_03	37,2102	6	6	35,4568	3,3112	6,2017	1,6146	1,287	1,0839	1,0665	55,4533	99,6202
	2022_04	0,0905	1	0,998	0,0905	1,6557	0,0907	1,6557	1,6557	1,1518	1,1518	33,4333	97,7182
	2022_06	13,7645	12	11,976	10,1838	3,9327	1,1493	1,5166	1,4618	1,0984	1,1084	46,0821	99,2079
	2022 07	28,6645	6	5,988	18,7117	4,8834	4,787	1,9889	1,784	1,1217	1,1247	58,3913	99,2739
	2022 08	43,903	10	9,98	28,5398	3,7837	4,3991	1,4036	1,1484	1,0578	1,0375	32,7931	99,5795
	2022_09	30,2147	1	0,998	30,2147	1,6694	30,2752	1,6694	1,6694	1,0813	1,0813	-	99,878
	2022_10	11,7433	3	2,994	11,4365	3,2125	3,9223	1,7135	1,0648	1,077	1,0222	67,8515	99,3522
	2022_11	26,9461	1	0,998	26,9461	2,3058	27	2,3058	2,3058	1,1337	1,1337		99,748
	2022_12	17,1311	5	4,99	13,3843	5,0205	3,4331	2,0275	1,4059	1,1146	1,1024	27,1876	99,0268
	2022_13	14,6536	2 7	1,996	14,6436	2,6428	7,3415	1,8083	1,8083	1,081	1,081	11	99,569
	2022_14	37,3207		6,986	32,7997	4,5286	5,3422	1,8013	1,6639	1,1167	1,1071	52,2194	99,4216
	2022_15 2022_16	19,0224 37,1237	13 1	12,974 0,998	10,7896 37,1237	5,5961 1,4057	1,4662 37,198	1,7535 1,4057	1,5556 1,4057	1,1114 1,0531	1,122 1,0531	44,5474	98,9438 99,9334
	2022_16	21,9364	1	0,998	21,9364	1,7889	21,9803	1,7889	1,7889	1,0531	1,0531		99,8313
	2022_17	57,3668	1	0,998	57,3668	1,2492	57,4816	1,2492	1,2492	1,0336	1,0336	-	99,967
23	2022_19	4,4953	i	0,998	4,4953	2,6729	4,5043	2,6729	2,6729	1,1837	1,1837	_	99,207
2022	2022 20	44,3286	7	6,986	41,4507	2,5094	6,3453	1,4018	1,3309	1,0764	1,0745	91,102	99,773
	2022 21	11,3032	5	4,99	10,6623	3,822	2,2652	2,2014	2,1	1,186	1,1858	42,9775	99,157
	2022_22	31,2363	7	6,986	18,2615	2,4236	4,4713	1,3218	1,2456	1,0735	1,0664	49,631	99,745
	2022_23	42,474	5	4,99	41,625	3,0529	8,5118	1,8764	1,7834	1,1134	1,1336	22,0851	99,684
	2022_24	6,2095	1	1	6,2095	1,6533	6,2095	1,6533	1,6533	1,0913	1,0913	-	99,736
	2022_25	9,2395	2	1,996	9,0958	1,8851	4,629	1,5484	1,5484	1,0913	1,0913	132,2309	99,707
	2022_26	14,6871	1	0,998	14,6871	2,0859	14,7165	2,0859	2,0859	1,1237	1,1237	-	99,715
	2022_27	13,0831	1	0,998	13,0831	1,7545	13,1093	1,7545	1,7545	1,0956	1,0956	-	99,790
	2022_28	4,9122	1	0,998	4,9122	1,7838	4,922	1,7838	1,7838	1,1073	1,1073	-	99,644
	2022_29	9,2488	1	0,998	9,2488	2,399	9,2673	2,399	2,399	1,1531	1,1531	-	99,538
	2022_30	6,2548	1	0,998	6,2548	1,7086	6,2673	1,7086	1,7086	1,0971	1,0971	-	99,715
	2022_31 2022_32	7,999	1	0,998	7,999	2,0053	8,015	2,0053	2,0053	1,1235	1,1235	-	99,643
	2022_32	10,1188 4,8283	1	0,998 0,998	10,1188 4,8283	2,3171 1,9909	10,139 4,838	2,3171 1,9909	2,3171 1,9909	1,1458 1,1277	1,1458 1,1277	-	99,584 99,547
	2022_33	1,0149	1	0,998	1,0149	1,3663	1,0169	1,3663	1,3663	1,068	1,068	-	99,547
	2022 34	1,5397	3	2,994	0,7774	3,0321	0,5143	1,7526	1,2373	1,1151	1,0618	204,843	98,346
	2022 35									1,11,71	1,0010		20,240
	2022 35												99 652
	2022_35 2022_36 2022_37	3,7472 5,3613	1 2	0,998	3,7472 3,3104	1,6701 2,0991	3,7547 2,686	1,6701 1,4884	1,6701 1,4884	1,0976 1,0783	1,0976 1,0783	324,0401	99,652 99,523

NOTA:

Los datos son parte de una misma base de datos, sin embargo para efectos de visualización se dividieron según los usos de suelo.

Los usos de suelo: Bosque, vegetación inundable, cultivos, y pastos y arbustos fueron omitidos en esta base de datos debido a las hipotesis de investigeión planteadas.

La tabla consta de 75 entradas (38 muestras para cada año 2020, 2022)

Tabla 4.6. Base de datos para el análisis de correlación y regresiones lineales

(Escala 1 k – Métricas del paisaje para el uso de suelo correspondiente a construcción)

AÑO	ID	C_PLAND	C_NP	C_PD	C_LPI	C_LSI	C_A_MN	C_SH_MN	C_SH_MD	C_FR_MN	C_FR_MD	C_ENN_MN	C_AI
	2020_01	38,1489	1	0,998	38,1489	2,0873	38,2252	2,0873	2,0873	1,1146	1,1146		99,8238
	2020_02	-	-	-	-	-	-	-	-	-	-	-	
	2020_03	5,9104	4	3,992	3,2663	2,5441	1,4806	1,4401	1,4542	1,0796	1,0752	81	99,3625
	2020_04	-	-	-	-	-	-	-	-	-	-	-	-
	2020_05 2020_06	40,3785	1	0,998	40,3785	2,4485	40,4593	2,4485	2,4485	1,1388	1,1388	-	99,7718
	2020_00	40,5765	1	0,998	40,5765	2,4463	40,4393	2,4463	2,4463	1,1300	1,1300	-	99,//18
	2020_07	2,0591	2	1,996	1,4355	2,066	1,0316	1,5325	1,5325	1,0935	1,0935	561	99,2508
	2020 09	44,1771	2	1,996	36,4939	2,4185	22,1328	1,713	1,713	1,0854	1,0854	86,7295	99,7864
	2020 10	-	-	-	-	-,	-	-	-	-	-	-	-
	2020_11	54,9534	3	2,994	48,2225	2,0047	18,3545	2,4117	1,5481	1,2741	1,0789	36,1377	99,8643
	2020_12	0,1597	2	1,996	0,1497	1,75	0,08	1,2692	1,2692	1,0599	1,0599	32,8938	98,0769
	2020_13	73,6303	1	0,998	73,6303	1,4581	73,7776	1,4581	1,4581	1,0558	1,0558	-	99,9466
	2020_14	-	-	-	-	-	-	-	-	-	-	-	-
	2020_15 2020_16	0,5539	2	1,996	0,3044	1,8926	0,2775	1,3347	1,3347	1,0733	1,0733	131,7649	98,7855
	2020_10	24,4796	9	8,982	17,7371	3,7649	2,7254	1,3671	1,25	1,0578	1,0514	53,4842	99,4403
	2020_17	36,1993	2	1,996	32,7875	1,6788	18,1359	1,3066	1,3066	1,0459	1,0459	554,9072	99,8871
20	2020 19	41,1027	2	1,996	40,953	1,3777	20,5924	1,2318	1,2318	1,0414	1,0414	101,5972	99,941
2020	2020 20	8,9304	1	0,998	8,9304	1,2621	8,9483	1,2621	1,2621	1,041	1,041	-	99,912
	2020_21	2,1625	3	3	0,82	2,3864	0,7208	1,3815	1,283	1,0721	1,057	130,8518	99,0478
	2020_22	-	-	-	-	-	-	-	-	-	-	-	-
	2020_23	0,3683	2	1,996	0,2086	1,7541	0,1845	1,2446	1,2446	1,0591	1,0591	607,587	98,7324
	2020_24	83,5397	2	1,996	81,8322	1,3984	41,8535	1,2236	1,2236	1,0354	1,0354	77,4726	99,9564
	2020_25	66,0206	1	0,998	66,0206	1,1666	66,1527	1,1666	1,1666	1,023	1,023	-	99,9795
	2020_26 2020_27	16,7969 52,1008	1 5	0,998 4,99	16,7969 45,6166	1,5676 2,3112	16,8305 10,441	1,5676 1,3327	1,5676 1,1765	1,0748 1,0506	1,0748 1,0414	85,0026	99,8612 99,8182
	2020_27	88,2224	3	2,994	87,3658	1,2967	29,4663	1,229	1,141	1,0412	1,0193	57,0015	99,9684
	2020_20	80,3992	4	3,992	78,2965	1,3769	20,14	1,1057	1,0855	1,0183	1,0136	97,1533	99,9579
	2020 30	93,3602	2	1,996	89,656	1,3111	46,7735	1,221	1,221	1,0352	1,0352	113,1459	99,9678
	2020 31	47,2032	3	2,994	32,2753	3,6497	15,7659	2,1764	2,3787	1,1297	1,1367	72,0451	99,614
	2020_32	64,2096	4	3,992	61,2335	1,8804	16,0845	1,3687	1,3897	1,0629	1,0573	115,3492	99,8901
	2020_33	12,0835	1	0,998	12,0835	1,7716	12,1077	1,7716	1,7716	1,0977	1,0977	-	99,7776
	2020_34	19,7273	9	8,982	7,9494	3,9382	2,1963	1,4746	1,3333	1,0812	1,0815	52,5079	99,337
	2020_35		-	-								-	-
	2020_36 2020_37	1,2254	1	0,998	1,2254	1,7072	1,2279	1,7072	1,7072	1,114	1,114	-	99,3549
	2020_37	-	-	-	-	-	-	-	-	-	-	-	-
	2020_38	34,5969	1	0,998	34,5969	2,3778	34,6661	2,3778	2,3778	1,1359	1,1359		99,7655
	2022_01	6,0828	11	10,978	2,1966	4,083	0,5541	1,3897	1,1846	1,072	1,051	26,8884	98,7455
	2022 03	5,129	8	7,984	1,978	3,0198	0,6424	1,3406	1,3517	1,0808	1,0746	93,6172	99,1039
	2022 04	1,0353	1	1	1,0353	1,2108	1,0353	1,2108	1,2108	1,0419	1,0419	-	99,7903
	2022_05	-	-	-	-	-	-	-	-	-	-	-	-
	2022_06	37,5259	1	0,998	37,5259	2,7107	37,601	2,7107	2,7107	1,1554	1,1554	-	99,7204
	2022_07	5,6657	10	9,98	3,1237	3,7233	0,5677	1,3691	1,3013	1,0769	1,0735	64,4287	98,8511
	2022_08	3,9094	3	2,994	2,0549	2,3359	1,3057	1,3696	1,3882	1,067	1,0751	644,6785	99,3213
	2022_09	45,7011	2	1,996	37,7532	2,4136	22,8963	1,7133	1,7133	1,0856	1,0856	73,4983	99,7907
	2022_10 2022_11	53,8289	5	4,99	46,8225	2,2519	10,7873	1,4051	1,3208	1,0715	1,0738	12,8225	99,8293
	2022_11	6,279	3	2,994	6,2681	2,2032	2,0972	1,571	1,5714	1,2063	1,1381	180,4268	99,8293
	2022_12	74,1355	3	2,994	73,5274	1,627	24,7613	1,2379	1,2	1,0345	1,0422	147,886	99,9272
	2022_14	0,5932	5	4,99	0,2495	2,3806	0,1189	1,2052	1,2	1,0589	1,0466	218,5898	98,1761
	2022_15	4,2949	3	2,994	3,3229	2,306	1,4345	1,4877	1,4855	1,0896	1,0896	680,3631	99,3672
	2022_16	0,251	2	1,996	0,1402	2,1584	0,1258	1,5258	1,5258	1,1172	1,1172	928,453	97,6263
	2022_17	22,3775	6	5,988	15,8804	3,5728	3,7371	1,5242	1,2674	1,0757	1,0544	74,4366	99,455
	2022_18	35,398	3	2,994	32,5156	1,6695	11,8229	1,193	1,2147	1,0293	1,0383	283,9992	99,8873
2022	2022_19	40,2679	2	1,996	40,2639	1,4107	20,1743	1,2383	1,2383	1,0536	1,0536	11	99,9352
8	2022_20	8,7378	1	0,998	8,7378	1,2939	8,7553	1,2939	1,2939	1,0453	1,0453	-	99,9003
	2022_21	1,6298	3 2	2,994	0,8184	2,4375	0,5444	1,4205	1,4286	1,0819	1,0802	139,0982	98,8644
	2022_22 2022_23	0,3779 0,0818	1	1,996 0,998	0,3283 0,0818	2,1694 1,1034	0,1894 0,082	1,5077 1,1034	1,5077 1,1034	1,0983 1,0331	1,0983 1,0331	41	98,0537 99,6207
	2022_23	83,8295	5	0,998	81,6328	1,1034	16,7659	1,1034	1,1034	1,0331	1,0351	27,8328	99,6207
			1	0,998	64,2441	1,1389	64,3727	1,1389	1,1389	1,0195	1,0195	27,0320	99,9827
		64 2441				1,1507		1,488	1,6023	1,1583	1,0788	21,7575	99,8077
	2022 25	64,2441 15,92	5		15,8402	1.766							
	2022_25 2022_26	15,92		4,99 6,986	15,8402 45,6017	1,766 2,1661	3,1904 7,1428	1,2879					99,8348
	2022 25		5	4,99	15,8402 45,6017 87,3089	1,766 2,1661 1,2809	7,1428 44,1339	1,2879	1,25 1,345	1,0629	1,0601	87,7331	
	2022_25 2022_26 2022_27	15,92 49,8995 88,0916 80,075	5 7	4,99 6,986	45,6017	2,1661	7,1428	1,2879 1,345 1,2763	1,25		1,0601 1,059 1,044		99,8348 99,9701 99,9567
	2022_25 2022_26 2022_27 2022_28 2022_29 2022_30	15,92 49,8995 88,0916 80,075 92,9889	5 7 2	4,99 6,986 1,996 1,996 1,996	45,6017 87,3089 77,8794 89,3805	2,1661 1,2809 1,3873 1,3138	7,1428 44,1339 40,1176 46,5875	1,2879 1,345 1,2763 1,2309	1,25 1,345 1,2763 1,2309	1,0629 1,059 1,044 1,0366	1,0601 1,059 1,044 1,0366	87,7331 149,94 163,9573 122,1556	99,9701 99,9567 99,9674
	2022 25 2022 26 2022 27 2022 28 2022 29 2022 30 2022 31	15,92 49,8995 88,0916 80,075 92,9889 44,8145	5 7 2 2 2 2 4	4,99 6,986 1,996 1,996 1,996 3,992	45,6017 87,3089 77,8794 89,3805 29,4555	2,1661 1,2809 1,3873 1,3138 3,7942	7,1428 44,1339 40,1176 46,5875 11,2261	1,2879 1,345 1,2763 1,2309 1,9716	1,25 1,345 1,2763 1,2309 1,8906	1,0629 1,059 1,044 1,0366 1,1094	1,0601 1,059 1,044 1,0366 1,104	87,7331 149,94 163,9573 122,1556 56,8401	99,9701 99,9567 99,9674 99,5822
	2022 25 2022 26 2022 27 2022 28 2022 29 2022 30 2022 31 2022 32	15,92 49,8995 88,0916 80,075 92,9889 44,8145 64,4524	5 7 2 2 2 2 4 3	4,99 6,986 1,996 1,996 1,996 3,992 2,994	45,6017 87,3089 77,8794 89,3805 29,4555 62,4371	2,1661 1,2809 1,3873 1,3138 3,7942 1,7631	7,1428 44,1339 40,1176 46,5875 11,2261 21,5271	1,2879 1,345 1,2763 1,2309 1,9716 1,3154	1,25 1,345 1,2763 1,2309 1,8906 1,2893	1,0629 1,059 1,044 1,0366 1,1094 1,0501	1,0601 1,059 1,044 1,0366 1,104 1,0531	87,7331 149,94 163,9573 122,1556 56,8401 221,8108	99,9701 99,9567 99,9674 99,5822 99,9049
	2022_25 2022_26 2022_27 2022_28 2022_29 2022_30 2022_31 2022_32 2022_33	15,92 49,8995 88,0916 80,075 92,9889 44,8145 64,4524 12,6563	5 7 2 2 2 2 4 3 1	4,99 6,986 1,996 1,996 1,996 3,992 2,994 0,998	45,6017 87,3089 77,8794 89,3805 29,4555 62,4371 12,6563	2,1661 1,2809 1,3873 1,3138 3,7942 1,7631 1,7574	7,1428 44,1339 40,1176 46,5875 11,2261 21,5271 12,6816	1,2879 1,345 1,2763 1,2309 1,9716 1,3154 1,7574	1,25 1,345 1,2763 1,2309 1,8906 1,2893 1,7574	1,0629 1,059 1,044 1,0366 1,1094 1,0501 1,0961	1,0601 1,059 1,044 1,0366 1,104 1,0531 1,0961	87,7331 149,94 163,9573 122,1556 56,8401 221,8108	99,9701 99,9567 99,9674 99,5822 99,9049 99,7865
	2022_25 2022_26 2022_27 2022_28 2022_29 2022_30 2022_31 2022_32 2022_33 2022_33 2022_34	15,92 49,8995 88,0916 80,075 92,9889 44,8145 64,4524 12,6563 18,0742	5 7 2 2 2 2 4 3 1	4,99 6,986 1,996 1,996 1,996 3,992 2,994 0,998 8,982	45,6017 87,3089 77,8794 89,3805 29,4555 62,4371 12,6563 7,6169	2,1661 1,2809 1,3873 1,3138 3,7942 1,7631 1,7574 3,5293	7,1428 44,1339 40,1176 46,5875 11,2261 21,5271 12,6816 2,0123	1,2879 1,345 1,2763 1,2309 1,9716 1,3154 1,7574 1,414	1,25 1,345 1,2763 1,2309 1,8906 1,2893 1,7574 1,4286	1,0629 1,059 1,044 1,0366 1,1094 1,0501 1,0961 1,0772	1,0601 1,059 1,044 1,0366 1,104 1,0531 1,0961 1,0913	87,7331 149,94 163,9573 122,1556 56,8401 221,8108	99,9701 99,9567 99,9674 99,5822 99,9049 99,7865 99,4036
	2022_25 2022_26 2022_27 2022_28 2022_29 2022_30 2022_31 2022_32 2022_33 2022_34 2022_34	15,92 49,8995 88,0916 80,075 92,9889 44,8145 64,4524 12,6563 18,0742 0,1916	5 7 2 2 2 2 4 3 1 9	4,99 6,986 1,996 1,996 1,996 3,992 2,994 0,998 8,982 0,998	45,6017 87,3089 77,8794 89,3805 29,4555 62,4371 12,6563 7,6169 0,1916	2,1661 1,2809 1,3873 1,3138 3,7942 1,7631 1,7574 3,5293 1,1818	7,1428 44,1339 40,1176 46,5875 11,2261 21,5271 12,6816 2,0123 0,192	1,2879 1,345 1,2763 1,2309 1,9716 1,3154 1,7574 1,414 1,1818	1,25 1,345 1,2763 1,2309 1,8906 1,2893 1,7574 1,4286 1,1818	1,0629 1,059 1,044 1,0366 1,1094 1,0501 1,0961 1,0772 1,0453	1,0601 1,059 1,044 1,0366 1,104 1,0531 1,0961 1,0913 1,0453	87,7331 149,94 163,9573 122,1556 56,8401 221,8108	99,9701 99,9567 99,9674 99,5822 99,9049 99,7865 99,4036 99,5736
	2022_25 2022_26 2022_27 2022_28 2022_29 2022_30 2022_31 2022_32 2022_33 2022_34 2022_35 2022_35	15,92 49,8995 88,0916 80,075 92,9889 44,8145 64,4524 12,6563 18,0742 0,1916 1,1856	5 7 2 2 2 2 4 3 1	4,99 6,986 1,996 1,996 1,996 3,992 2,994 0,998 8,982 0,998 0,998	45,6017 87,3089 77,8794 89,3805 29,4555 62,4371 12,6563 7,6169 0,1916 1,1856	2,1661 1,2809 1,3873 1,3138 3,7942 1,7631 1,7574 3,5293	7,1428 44,1339 40,1176 46,5875 11,2261 21,5271 12,6816 2,0123 0,192 1,188	1,2879 1,345 1,2763 1,2309 1,9716 1,3154 1,7574 1,414 1,1818 1,8303	1,25 1,345 1,2763 1,2309 1,8906 1,2893 1,7574 1,4286 1,1818 1,8303	1,0629 1,059 1,044 1,0366 1,1094 1,0501 1,0961 1,0772 1,0453 1,1289	1,0601 1,059 1,044 1,0366 1,104 1,0531 1,0961 1,0913 1,0453 1,1289	87,7331 149,94 163,9573 122,1556 56,8401 221,8108	99,9701 99,9567 99,9674 99,5822 99,9049 99,7865 99,4036 99,5736 99,2312
	2022_25 2022_26 2022_27 2022_28 2022_29 2022_30 2022_31 2022_32 2022_33 2022_34 2022_34	15,92 49,8995 88,0916 80,075 92,9889 44,8145 64,4524 12,6563 18,0742 0,1916	5 7 2 2 2 2 4 3 1 9	4,99 6,986 1,996 1,996 1,996 3,992 2,994 0,998 8,982 0,998	45,6017 87,3089 77,8794 89,3805 29,4555 62,4371 12,6563 7,6169 0,1916	2,1661 1,2809 1,3873 1,3138 3,7942 1,7631 1,7574 3,5293 1,1818	7,1428 44,1339 40,1176 46,5875 11,2261 21,5271 12,6816 2,0123 0,192	1,2879 1,345 1,2763 1,2309 1,9716 1,3154 1,7574 1,414 1,1818	1,25 1,345 1,2763 1,2309 1,8906 1,2893 1,7574 1,4286 1,1818	1,0629 1,059 1,044 1,0366 1,1094 1,0501 1,0961 1,0772 1,0453	1,0601 1,059 1,044 1,0366 1,104 1,0531 1,0961 1,0913 1,0453	87,7331 149,94 163,9573 122,1556 56,8401 221,8108	99,9701 99,9567 99,9674 99,5822 99,9049 99,7865 99,4036 99,5736

NOTA:
Los datos son parte de una misma base de datos, sin embargo para efectos de visualización se dividieron según los usos de suelo.
Los usos de suelo: Bosque, vegetación inundable, cultivos, y pastos y arbustos fueron omitidos en esta base de datos debido a las hipotesis de investigeión planteadas.
La tabla consta de 75 entradas (38 muestras para cada año 2020, 2022)

Tabla 4.7. Base de datos para el análisis de correlación y regresiones lineales

(Escala 1 k – Métricas del paisaje para el uso de suelo correspondiente a suelo descubierto)

AÑO	ID	S_PLAND	S_NP	S_PD	S_LPI	S_LSI	S_A_MN	S_SH_MN	S_SH_MD	S_FR_MN	S_FR_MD	S_ENN_MN	S_AI
	2020_01	1,8476	34	33,9321	0,2834	6,9084	0,0545	1,2285	1,0345	1,0548	1,0222	18,9203	95,6112
	2020_02 2020_03	0,4491 1,4232	1 12	0,998 11,976	0,4491 0,3992	1,6296 5,1297	0,45 0,1188	1,6296 1,5098	1,6296 1,4643	1,1176	1,1176 1,1189	88.1291	99,0412 96,51
	2020_03	0,0439	2	1,996	0,0299	1,5238	0,022	1,0714	1,0714	1,1067 1,0281	1,0281	319,6905	97,3747
	2020_04	0,0439	-	1,990	0,0299	1,3236	0,022	1,0714	1,0/14	1,0261	1,0281	319,0903	97,3747
	2020_06	1,5967	26	25,9481	0,6972	6,1383	0,0615	1,3272	1,1457	1,0893	1,0475	41,3129	95,9049
	2020 07	0,8333	6	5,988	0,4591	3,2186	0,1392	1,5596	1,1964	1,1238	1,052	235,4351	97,5419
	2020 08	0,4331	7	6,986	0,2096	2,9091	0,062	1,2301	1,1429	1,0642	1,0504	140,3689	97,0519
	2020_09	4,8289	43	42,9141	1,3912	7,8409	0,1125	1,3023	1,0345	1,0651	1,0222	27,4703	96,8754
	2020_10	-	-	-	-	-	-	-	-	-	-	-	-
	2020_11	5,7874	26	25,9481	5,1467	4,9917	0,223	1,321	1	1,0647	1	25,4313	98,3342
	2020_12	4,3795 1,5979	7 32	6,986 31,9361	3,1539 0,4304	3,0859 6,9173	0,6269 0,05	1,3401 1,3059	1,1429 1,1409	1,063 1,0744	1,0504 1,0517	29,7809 29,6274	98,9994 95,2688
	2020_13 2020_14	2,4449	13	12,974	0,4304	4,4618	0,05	1,3039	1,1409	1,0688	1,0517	69,8249	95,2688
	2020_14	0,7553	3	2,994	0,6954	2,7586	0,2523	1,6303	1,5556	1,112	1,1442	12,549	97,9548
	2020_16	0,1218	8	7,984	0,0399	3,0286	0,0153	1,0787	1	1,0258	1,0002	20,5638	94,0084
	2020 17	2,5713	91	90,8183	0,1896	11,5373	0,0283	1,2078	1,0345	1,0566	1,0222	17,6186	93,3738
	2020_18	0,5452	25	24,9501	0,0898	5,8041	0,0219	1,147	1	1,0379	1	35,0395	93,4032
2020	2020_19	1,8292	31	30,9381	0,7315	6,5793	0,0591	1,2812	1,0345	1,0628	1,0222	21,9692	95,8447
20	2020_20	0,1058	9	8,982	0,0269	2,9697	0,0118	1,0135	1	1,0048	1	38,8068	93,6709
	2020_21	1,0599	26	26	0,1188	7,0291	0,0408	1,3535	1,3793	1,0883	1,1212	13,7725	94,0835
	2020_22 2020_23	0,1098	1	0,998	0,1098	1,3433	0,11	1,3433 1,2159	1,3433 1,2593	1,0871	1,0871 1,0912	25,3352	98,9217
	2020_23	0,1597 1,1666	5 30	4,99 29,9401	0,0998 0,655	2,575 5,5438	0,032 0,039	1,1691	1,2393	1,0647 1,0465	1,0912	25,3352 19,4725	95,9615 95,7428
	2020_24	0,5308	12	11,976	0,1996	4,9452	0,0443	1,3714	1,0517	1,0805	1,0242	34,8163	94,5101
	2020_25	0,7685	17	16,9661	0,1397	5,3068	0,0453	1,2921	1,25	1,0704	1,0745	69,0465	95,021
	2020 27	1,0763	50	49,9001	0,0898	7,8413	0,0216	1,1156	1	1,0357	1,0046	25,253	93,3386
	2020 28	0,8989	16	15,968	0,6607	4,0842	0,0563	1,2375	1	1,067	1,004	36,1047	96,7123
	2020_29	0,848	26	25,9481	0,1993	6	0,0327	1,2237	1,1099	1,0654	1,0504	34,5742	94,497
	2020_30	0,1106	7	6,986	0,0299	3	0,0158	1,1337	1	1,0447	1	27,5782	93,7645
	2020_31	3,6642	81	80,8382	0,8293	10,3464	0,0453	1,2332	1	1,0573	1,0005	22,8945	95,0867
	2020_32	1,6885	47	46,9061	0,2595	8,4291	0,036	1,2678	1,0345	1,0707	1,0222	25,5989	94,2252
	2020_33	0,6213	30	29,9401	0,0699	6,6013	0,0208	1,178	1,0172	1,0507	1,0167	21,2576	92,8002
	2020_34 2020_35	3,0037 0,1597	80 1	79,8402 0,998	0,2794 0,1597	10,7406 1,375	0,0376 0,16	1,2298 1,375	1,0345 1,375	1,0576 1,0863	1,0222 1,0863	18,4336	94,3523 99,0385
	2020_36	0,08	6	5,988	0,0299	2,4737	0,0134	1,0238	1,373	1,0112	1,0803	30,1183	94,5701
	2020_37	-	-	-	-	-	-	-	-	-	-	-	-
	2020 38	-	-	-	-	-	-	-	-	-	-	-	-
	2022_01	3,6181	45	44,9101	0,7445	8,3806	0,0806	1,3169	1,25	1,0716	1,0667	22,2419	96,1012
	2022_02	9,4715	31	30,9381	2,3473	8,4263	0,3061	1,5744	1,3906	1,104	1,0925	26,1925	97,5781
	2022_03	6,8072	18	17,9641	3,8223	5,369	0,3789	1,3755	1,2166	1,0736	1,0658	46,777	98,3185
	2022_04	1,3234	4	4	0,588	2,8268	0,3309	1,4346	1,3659	1,0869	1,0772	186,4179	98,3916
	2022_05	0.0246	-	21.05(1	0.1026	5,8041	0.0426	1 2701	1.1420	1.0747	1.0504	21.7215	04.0710
	2022_06 2022_07	0,9346 1,9203	22 7	21,9561 6,986	0,1926 1,2465	3,0036	0,0426 0,2749	1,2701 1,3003	1,1429 1,1892	1,0747 1,0608	1,0504 1,0544	21,7215	94,9719 98,542
	2022_07	0,0874	1	0,986	0,0874	1,9667	0,2749	1,9667	1,1892	1,2036	1,0344	34,0656	96,5721
	2022_09	4,904	35	34,9301	1,8794	7,0856	0,1404	1,3211	1,0667	1,0658	1,0281	16,5783	97,2381
	2022_10	-	-	-	-	-	-	-,5211	-	-,0050	-	-	-
	2022 11	3,514	27	26,9461	2,5259	5,8963	0,1304	1,4161	1	1,0849	1,0005	23,2682	97,3717
	2022_12	1,9361	4	3,992	1,3473	3,0824	0,485	1,5796	1,5258	1,0901	1,0852	27,1379	98,4917
	2022_13	1,1946	19	18,9621	0,3234	6,2192	0,063	1,4656	1,3333	1,1124	1,1308	36,7552	95,1815
	2022_14	-	-	-	-	-	-	-	-	-	-	-	-
	2022_15	0,7275	1	0,998	0,7275	1,2865	0,729	1,2865	1,2865	1,057	1,057	-	99,6599
	2022_16	0,0399	1	0,998	0,0399	1,25	0,04	1,25	1,25	1,0745	1,0745	- 22 1202	98,6842
	2022_17	1,2579	38	37,9241	0,1597	7,9111	0,0332	1,271	1,0708	1,068	1,0291	33,1292	93,7758
2	2022_18 2022_19	0,6038 1,1207	16 39	15,968 38,9221	0,1238 0,1896	5,1538 6,6274	0,0378 0,0288	1,2871 1,1118	1,2037 1,0345	1,074 1,0344	1,0622 1,0222	32,1192 26,5016	94,5747 94,6372
2022	2022_19	0,3493	9	8,982	0,1896	2,7227	0,0288	1,1118	1,0343	1,0344	1,0222	120,9439	97,0208
. 4	2022_20	3,0858	19	18,9621	0,9172	5,2955	0,1627	1,3745	1,3043	1,0841	1,0745	60,833	97,541
	2022 22	3,1121	2	1,996	3,1021	2,5254	1,5592	1,738	1,738	1,0878	1,0878	749,79	99,1292
	2022 23	0,1158	3	2,994	0,0559	2,3043	0,0387	1,3556	1,3793	1,1082	1,1192	132,6642	96,0018
	2022_24	1,0009	16	16	0,34	5,1045	0,0626	1,3275	1,1928	1,077	1,057	83,3363	95,8369
	2022_25	0,8004	12	11,976	0,3693	4,6167	0,0668	1,3579	1,1839	1,0824	1,0584	14,7024	95,8953
	2022_26	0,4808	8	7,984	0,1451	3,9496	0,0602	1,3652	1,2576	1,0834	1,0721	23,5144	95,6828
	2022_27	1,2889	30	29,9401	0,1796	7,3553	0,0431	1,3366	1,1422	1,0799	1,0484	22,6465	94,3403
	2022_28	0,2006	13	12,974	0,0399	3,9	0,0155	1,0912	1	1,0327	1,0074	23,0036	93,3588
	2022_29 2022_30	0,1806 0,2194	7 8	6,986 7,984	0,0699 0,1096	3,7326 3,8298	0,0259 0,0275	1,3332 1,3032	1 1,1897	1,0722 1,078	1,0005 1,0643	28,5807 17,125	93,3503 93,8168
	2022_30 2022_31	0,2194 2,3074	8 16	15,968	1,3673	3,8298 4,3902	0,0275	1,3032	1,1897	1,078	1,0643	74,1364	93,8168
		1,1752	19	18,9621	0,3653	4,3902	0,1445	1,3981	1,4039	1,0471	1,016	74,1364 34,2276	96,2672
	2022_31		8	7,984	1,1876	3,3458	0,3201	1,3467	1,2874	1,0779	1,0701	70,3051	98,5206
	2022 32	2,5559											
	2022_32 2022_33	2,5559 4,6518	21	20,9581	2,1856	5,7199	0,222	1,4565	1,3333	1,0953	1,0854	35,8794	97.8026
	2022 32				2,1856 1,2375	5,7199 2,0714	0,222 0,622	1,5474	1,3333 1,5474	1,1021	1,0854 1,1021	35,8794 11,0454	97,8026 99,0266
	2022_32 2022_33 2022_34 2022_35 2022_36	4,6518 1,2415 0,2975	21	20,9581 1,996 2,994	1,2375 0,2385	2,0714 3,7091	0,622 0,0994	1,5474 1,9708	1,5474 1,725	1,1021 1,1682	1,1021 1,1865	11,0454 37,9177	99,0266 94,9077
	2022_32 2022_33 2022_34 2022_35	4,6518 1,2415	21 2	20,9581 1,996	1,2375	2,0714	0,622	1,5474	1,5474	1,1021	1,1021	11,0454	99,0266

Los datos son parte de una misma base de datos, sin embargo para efectos de visualización se dividieron según los usos de suelo.

Los usos de suelo: Bosque, vegetación inundable, cultivos, y pastos y arbustos fueron omitidos en esta base de datos debido a las hipotesis de investigción planteadas.

La tabla consta de 75 entradas (38 muestras para cada año 2020, 2022)

Anexo 5: Análisis Estadísticos

A continuación se presenta las tablas de los estadísticos descriptivos resultantes para los años 2020 y 2022 y para las dos escalas territoriales de análisis. Primeramente, se presenta el análisis de diferencias de las metricas del paisaje, seguido del análisis de correlación entre las métricas del paisaje tanto hídricas como urbanas tanto consigo mismas como entre ellas y finalmente el análisis de regresión en el cual se valida la hipótesis investigativa sobre la infruencia de el componente hídrico en la forma urbana de las ciudades.

Tabla 5.1. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre ejes fluviales para RT1.

						2020							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
Bosque	0,069*	0,432	0,432	0,004***	0,908	0,388	0,021**	0,547	0,003***	0,043**	0,696	0,017**	0,796
Natural	0,511	0,680	0,690	0,447	0,906	0,598	0,002***	0,005***	0,010***	0,004***	0,139	0,748	0,820
Cuerpo de Agua	0,002***	0,132	0,125	<0,001***	0,013**	<0,001***	0,403	0,319	0,505	0,620	0,545	0,447	<0,001***
Agricola	0,562	0,198	0,185	0,193	0,007***	0,146	0,102	0,44**	0,049**	0,082*	0,981	0,908	0,055*
Urbano	0,212	0,927	0,922	0,146	0,400	0,069*	0,185	0,691	0,266	0,560	0,005***	0,411	0,014**
						2022							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
Bosque	0,073*	0,013**	0,013**	0,770	0,014**	0,017**	0,132	0,193	0,713	0,597	0,008***	0,231	0,013**
Natural	0,007***	0,185	0,185	0,007***	0,097*	0,082*	0,001***	0,030**	0,155	0,065*	0,709	0,652	0,289
Cuerpo de Agua	0,055*	0,180	0,176	0,058*	0,186	0,003***	0,119	0,633	0,867	0,909	0,221	0,544	0,043**
Agricola	0,006***	0,401	0,401	0,003***	0,236	0,005***	0,059*	0,525	0,789	0,648	0,919	0,296	0,027**
Urbano	0,202	0,042**	0,042**	0,417	0,013**	0,887	0,060*	0,714	0,422	0,326	0,191	0,160	0,375

Fuente: Trabajo investgativo y posterior procesamiento en Fragstats y SPSS

Tabla 5.2. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para RT1.

LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
Bosque	0,095*	0,016**	0,017**	0,932	<0,001***	0,026**	0,722	0,041**	0,598	0,286	<0,001***	<0,001***	0,006***
Natural	0,963	0,824	0,821	0,532	0,200	0,617	<0,001***	<0,001***	<0,001***	<0,001***	<0,001***	0,894	0,069*
Cuerpo de Agua	0,130	0,093*	0,098*	0,057*	0,271	0,028**	0,725	0,498	0,885	0,85	0,761	0,062*	0,048**
Agricola	<0,001***	0,015**	0,015**	0,007***	<0,001***	0,031**	0,003***	0,962	0,339	0,416	0,896	0,025**	0,299
Urbano	<0,001***	0,413	0,416	<0,001***	0,162	<0,001***	0,053*	0,102	0,079*	0,817	0,018**	0,574	<0,001**

Tabla 5.3. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para RT1 según su uso de suelo y eje fluvial.

EJE	LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	PAFR	ENN	AI
	Bosque	0,178	0,375	0,375	0,020**	0,710	0,205	0,687	0,561	0,272	0,120	0,281	<0,001***	0,737
Afluentes del Río Napo	Natural	0,005***	0,178	0,178	0,002***	0,976	0,490	<0,001***	0,003***	0,002***	<0,001***	<0,001***	0,510	0,017**
tes del R	Cuerpo de Agua	0,011**	0,292	0,308	0,005***	0,224	0,013**	0,870	0,195	0,833	0,895	0,302	0,870	0,001**
. Afluen	Agricola	0,777	0,022**	0,22**	0,200	0,011**	0,045**	0,045**	0,507	0,108	0,947	0,974	0,412	0,008**
-	Urbano	0,006***	0,394	0,392	0,002***	0,499	<0,001***	0,127	0,241	0,238	0,792	0,002	0,844	<0,001**
	Bosque	0,013**	0,002***	0,002***	0,283	<0,001***	0,003***	0,199	0,043**	0,291	0,561	<0,001***	0,002***	<0,001*
abo	Natural	0,171	0,685	0,685	0,499	0,134	0,442	<0,001***	<0,001***	<0,001***	0,003***	0,006***	0,694	0,285
2. Río Napo	Cuerpo de Agua	0,47	0,293	0,296	0,31	0,38	0,104	0,618	0,715	0,938	0,974	0,738	0,040**	0,218
.2	Agricola	<0,001***	0,088*	0,089*	<0,001***	0,005***	<0,001***	0,001***	0,71	0,942	0,289	0,949	0,031**	0,015*
	Urbano	0,019**	0,124	0,125	0,002***	0.038**	<0,001***	0,154	0,225	0,167	0,732	0,103	0,401	<0,001*

Tabla 5.4. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre ejes fluviales para RT2.

					2020							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	ENN	AI
Bosque	0,656	0,093*	0,092*	0,794	0,157	0,997	0,832	0,658	0,076*	0,373	0,014**	0,977
Vegetación Inundable	0,043**	0,443	0,443	0,008***	0,341	0,032**	0,304	0,278	0,055*	0,179	0,953	0,045**
Cuerpo de Agua	<0,001***	0,002***	0,002***	<0,001***	0,052*	0,759	0,327	0,047**	0,380	0,503	0,101	0,797
Cultivos	0,423	0,154	0,154	0,249	0,038**	0,190	0,385	0,231	0,356	0,195	0,750	0,040**
Pastos y Arbustos	0,555	0,635	0,623	0,814	0,894	0,363	0,729	0,922	0,945	0,565	0,237	0,415
Suelo Descubierto	0,336	0,400	0,412	0,053*	0,452	0,010***	0,103	0,088*	0,175	0,139	0,075*	0,009**
Construcción	0,036**	0,642	0,630	0,052*	0,916	0,149	0,033**	0,036**	0,041**	0,089*	0,128	0,134
					2022							
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	ENN	AI
Bosque	0,083*	0,595	0,595	0,023**	0,453	0,036**	0,515	0,280	0,355	0,159	0,349	0,031**
Vegetación Inundable	0,066*	0,614	0,614	0,008***	0,574	0,012**	0,795	0,410	0,851	0,234	0,048**	0,030**
Cuerpo de Agua	<0,001***	0,005***	0,005***	<0,001***	0,008***	0,165	0,480	0,081*	0,439	0,250	0,021**	0,510
Cultivos	0,969	0,274	0,287	0,935	0,121	0,912	0,509	0,151	0,264	0,059*	0,579	0,666
Pastos y Arbustos	0,093*	0,558	0,558	0,063*	0,494	0,175	0,917	0,740	0,535	0,457	0,424	0,142
Suelo Descubierto	0,041**	0,261	0,261	0,062*	0,224	0,156	0,106	0,766	0,269	0,655	0,156	0,503
Construcción	0,017**	0,752	0,699	0,024**	0,064*	0,033**	0,195	0,252	0,464	0,269	0,507	0,033**

Tabla 5.5. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para RT2.

			DIFE	RENCIA	S ENTR	E AÑOS	2020 - 20	22				
LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	ENN	AI
Bosque	0,034**	0,032**	0,035**	0,068*	0,060*	0,525	0,252	0,038**	0,087*	0,064*	0,053*	0,735
Vegetación Inundable	0,067*	0,224	0,227	0,014**	0,512	0,002***	0,021**	<0,001***	0,036**	<0,001***	0,270	<0,001***
Cuerpo de Agua	0,578	0,489	0,426	0,418	0,266	0,247	0,683	0,345	0,643	0,289	0,812	0,058*
Cultivos	0,654	<0,001***	<0,001***	0,845	0,004***	0,061*	0,032**	0,384	0,553	0,255	0,102	0,186
Pastos y Arbustos	0,003***	0,944	0,944	0,021**	0,611	0,033**	0,077*	0,075*	0,428	0,148	0,256	0,105
Suelo Descubierto	0,421	0,151	0,153	0,155	0,196	0,020**	0,005***	0,005***	0,017**	0,006***	0,402	0,054*
Construcción	0,296	0,278	0,273	0,276	0,622	0,268	0,653	0,783	0,766	0,526	0,822	0,416
Niveles de confianza: *90%	, **95%, ***99%	6										

Tabla 5.6. Prueba Kruskall Wallis de diferencias de las métricas de paisaje entre los años 2020 y 2022 para RT2 según su uso de suelo y eje fluvial.

			D	IFEREN	CIAS EN	TRE AÑ	OS 2020	- 2022					
EJE	LULC	PLAND	NP	PD	LPI	LSI	A_MN	SH_MN	SH_MD	FR_MN	FR_MD	ENN	AI
	Bosque	0,228	0,280	0,280	0,277	0,775	0,384	0,437	0,555	0,103	0,192	0,913	0,384
	Vegetación Inundable	0,086*	0,354	0,354	0,075*	0,839	0,048**	0,154	0,044**	0,016**	0,001***	0,044**	0,046*
ça	Cuerpo de Agua	0,321	0,488	0,489	0,157	0,181	0,245	0,716	0,355	0,337	0,135	0,806	0,034*
Río Coca	Cultivos	0,386	0,276	0,276	0,644	0,806	1,000	0,600	0,709	0,678	0,964	0,389	0,819
	Pastos y Arbustos	<0,001***	0,169	0,169	0,007***	0,321	0,033**	0,412	0,298	0,549	0,202	0,270	0,086
	Suelo Descubierto	0,279	0,806	0,806	0,412	0,469	0,279	0,174	0,199	0,292	0,190	0,151	0,96
	Construcción	0,680	0,163	0,130	0,509	0,248	0,364	0,413	0,606	0,457	0,920	0,884	0,99
	Bosque	0,406	0,004***	0,004***	0,897	0,010***	0,097*	0,225	0,042**	0,705	0,226	0,022**	0,082
	Vegetación Inundable	0,288	0,806	0,806	0,130	0,908	0,060*	0,165	0,741	0,882	0,,576	0,630	0,045
8	Cuerpo de Agua	0,981	0,593	0,594	0,951	0,756	0,692	0,862	0,836	0,716	0,721	0,522	0,63
2. Río Napo	Cultivos	0,929	0031**	0,031**	0,722	0,017**	0,155	0,801	0,444	0,328	0,159	0,328	155,0
2. R	Pastos y Arbustos	0,940	0,325	0,307	0,705	0,903	1,000	0,257	0,161	0,554	0,096*	0,940	0,70
	Suelo Descubierto	0,710	0,500	0,500	0,288	0,481	0,327	0,533	0,411	0,530	0,831	0,023**	0,20
	Construcción	0,380	0,721	0,839	0,380	0,845	0,329	0,485	0,372	0,309	0,558	0,897	0,42
	Bosque	0,150	0,699	0,699	0,152	0,665	0,272	0,548	0,250	0,206	0,289	0,337	0,39
	Vegetación Inundable	0,550	0,205	0,206	0,341	0,452	0,044**	0,039**	0,078*	0,054*	0,094*	0,295	0,022
mino	Cuerpo de Agua	0,479	0,586	0,372	0,436	0,837	0,422	0,628	0,475	0,756	0,546	0,428	0,41
Río Payamino	Cultivos	0,965	0,022**	0,023**	0,600	0,033**	0,206	0,021**	0,024**	0,054*	0,013**	0,662	0,71
3. Río	Pastos y Arbustos	0,147	0,644	0,645	0,259	0,610	0,174	0,286	0,529	0,821	0,807	0,800	0,32
	Suelo Descubierto	0,765	0,034**	0,036**	0,311	0,038**	0,029**	0,018**	0,011**	0,018**	0,010***	0,572	0,061
	Construcción	0,624	0,757	0,757	0,586	0,786	0,771	0,957	0,568	0,724	0,741	0,481	0,78

Tabla 5.7. Prueba de correlación de Pearson para las métricas de paisaje hídricas y urbanas entre la misma categoría (2020)

					U NP	U PD	U LPI FI	U LSI	U AMN RC	U SH MN	U FR MN	U FRMD FI	U_PAFR	U ENN MN	U AI		
R_NP_RC	Pearson	0,025			,704**	,704**	,737**	,641**	,518**	0,176	-0,152	-0,093	0,077	-,591**	,523**	Pearson	U PLAND
L'III_KC	Sig.	0,867			<,001	<,001	<,001	<,001	<,001	0,248	0,319	0,548	0,617	<,001	<,001	Sig.	O_I LAND_
	N	46			45	45	44	45	45	45	45	44	45	45	45	N	
	Pearson	0,025	1,000**			1,000**	,413**	,933**	-0,036	-0,016	-0,166	-,314*	,529**	-,841**	-0,065	Correlación de Pearson	
R_PD_RC	Sig. (bilateral)	0,868	<,001			<,001	0,005	<,001	0,811	0,914	0,27	0,036	<,001	<,001	0,667	Sig. (bilateral)	U_NP
	N	46	46	46		46	45	46	46	46	46	45	46	46	46	N	
	Correlación de Pearson	,950**	-0,15	-0,15			,413**	,933**	-0,036	-0,016	-0,166	-,313*	,529**	-,841**	-0,065	Correlación de Pearson	
R_LPI_LOG	Sig. (bilateral)	<,001	0,321	0,321			0,005	<,001	0,811	0,916	0,271	0,036	<.001	<,001	0,666	Sig. (bilateral)	U_PD
	N	46	46	46	46		45	46	46	46	46	45	46	46	46	N N	
	Correlación															Correlación de	
	de Pearson	-0,062	,758**	,758**	-0,264			0,242	,580**	0,016	-0,241	-0,23	-0,024	-,414**	,638**	Pearson	
R_LSI	Sig. (bilateral)	0,684	<,001	<,001	0,076			0,109	<,001	0,915	0,11	0,133	0,878	0,005	< .001	Sig. (bilateral)	U_LPI_FI
	N	46	46	46	46	46		45	45	45	45	44	45	45	45	N	
	Correlación de Pearson	,753**	-,603**	-,603**	,829**	-,515**			-0,26	0,122	-0,005	-0,122	,579**	-,835**	-0,267	Correlación de Pearson	
R_AMN_LOG	Sig. (bilateral)	<,001	<,001	<,001	<,001	<,001			0,081	0,419	0,975	0,424	<.001	<,001	0,073	Sig. (bilateral)	U_LSI
	N	46	46	46	46	46	46		46	46	46	45	46	46	46	N	
	Correlación	0.000	2264	22/#	0.070	0.005	0.12			0.102		0.020	2004	0.022	.937**	Correlación de	
R SHMN FI	de Pearson Sig.	-0,089	-,336*	-,336*	-0,079	0,225	0,13			0,193	-0,1	-0,038	-,308*	0,023	,93/**	Pearson	U AMN RO
X_SHMIX_F1	(bilateral)	0,562	0,024	0,024	0,606	0,137	0,393			0,198	0,51	0,804	0,037	0,88	<,001	Sig. (bilateral)	O_AMIN_KC
	N	45	45	45	45	45	45	45		46	46	45	46	46	46	N	
	Correlación de Pearson Sig.	-0,251	-0,027	-0,028	-0,272	0,192	-0,166	,621**			,877**	,552**	0,119	-0,117	0,157	Correlación de Pearson	
R_SHMD_FI	(bilateral)	0,096	0,859	0,857	0,071	0,207	0,276	<,001			<,001	<,001	0,43	0,439	0,296	Sig. (bilateral)	U_SH_MN
	N	45	45	45	45	45	45	45	45		46	45	46	46	46	N	
	Correlación de Pearson	-,291*	-0,172	-0,172	-0,268	0,105	-0,093	,785**	.850**			.609**	0,088	0,059	-0,137	Correlación de Pearson	
R_FR_MN	Sig.								****			,					U FR MN
	(bilateral)	0,049	0,254	0,253	0,072	0,485	0,54	<,001	<,001			<,001	0,562	0,697	0,364	Sig. (bilateral)	*
	N Correlación	46	46	46	46	46	46	45	45	46		45	46	46	46	N Correlación de	
	de Pearson	-0,233	-0,028	-0,028	-0,229	0,055	-0,13	,538**	,877**	,869**			-,315*	0,284	0,037	Pearson	
R_FR_MD	Sig.	0.12	0.055	0.052	0.125	0.710	0.200	. 001	. 001	. 001			0.025	0.050	0.011	C 411 . B	U_FRMD_I
	(bilateral) N	0,12 46	0,855 46	0,853 46	0,125 46	0,718 46	0,388 46	<,001 45	<,001 45	<,001 46	46		0,035 45	0,058 45	0,811 45	Sig. (bilateral) N	
	Correlación	40	40	40	40	40	40	43	43	40	40		43	43	-	Correlación de	
	de Pearson	-0,066	0,157	0,157	-0,058	,542**	-0,127	,523**	0,053	,333*	0,067			-,672**	,502**	Pearson	
R_PAFR	Sig. (bilateral)	0,671	0,307	0,308	0,709	<,001	0,411	<,001	0,73	0,027	0,668			<,001	<,001	Sig. (bilateral)	U_PAFR
	N	44	44	44	44	44	44	44	44	44	44	44		46	46	N N	
	Correlación															Correlación de	
	de Pearson Sig.	-0,19	-0,235	-0,235	-0,143	-,293*	-0,088	-0,146	-0,128	-0,133	-0,142	-,383*			0,075	Pearson	
R_ENN_RC	(bilateral)	0,207	0,115	0,115	0,344	0,048	0,561	0,339	0,402	0,378	0,347	0,01			0,623	Sig. (bilateral)	U_ENN_M!
	N	46	46	46	46	46	46	45	45	46	46	44	46		46	N N	
	Correlación de Pearson	724**	529**	-,529**	,851**	-,661**	,892**	-0,076	-0,247	-0,205	0.150	-,305*	0.027				
L_AI	de Pearson Sig.	,734**	-,529***	-,529**	,051**	-,001~~	,092**	-0,070	-0,24/	-0,205	-0,158	-,305~	0,037				
	(bilateral)	<,001	<,001	<,001	<,001	<,001	<,001	0,621	0,102	0,171	0,294	0,044	0,807				
	N	46	46	46	46	46	46	45	45	46	46	44	46				

Tabla 5.8. Prueba de correlación de Pearson para las métricas de paisaje hídricas y urbanas entre la misma categoría (2022)

					U_NP	U_PD	U_LPI_FI	U_LSI	U_AMN_RC	U_SH_MN	U_FR_MN	U_FRMD_FI	U_PAFR	U_ENN_MN	U_AI		
R NP RC	Correlación de Pearson	0,155			,707**	,707**	,693**	,634**	0,168	,435**	0,174	-0,213	,642**	-,800**	0,176	Correlación de Pearson	U PLAND
	Sig. (bilateral)	0,314			<,001	<,001	<,001	<,001	0,276	0,003	0,253	0,166	<,001	<,001	0,247	Sig. (bilateral)	
	N	44			45	45	44	45	44	45	45	44	45	44	45	N	
R PD RC	Correlación de Pearson	0,152	.999**			1,000**	.449**	.959**	-,299*	,478**	.368*	-0,186	.818**	-,892**	,418**	Correlación de Pearson	U_NP
K_I D_KC	Sig. (bilateral)	0,324	<,001			<,001	0,002	<,001	0,046	<,001	0,012	0,221	<,001	<,001	0,004	Sig. (bilateral)	0_111
	N	44	45	45		46	45	46	45	46	46	45	46	45	46	N	
	Correlación de														-	Correlación de	
R_LPI_LOG	Pearson	,941**	0,029	0,028			,449**	,959**	-,298*	,479**	,368*	-0,186	,818**	-,892**	,418**	Pearson	U_PD
	Sig. (bilateral)	<,001 45	0,854 44	0,857 44	4.5		0,002 45	<,001	0,046	<,001	0,012	0,221 45	<,001 46	<,001	0,004	Sig. (bilateral)	
	N Correlación de	45	44	44	45		45	46	45	46	46	45	46	45	46	N Correlación de	
R LSI	Pearson	0,043	,780**	,772**	-0,105			,304*	,405**	0,17	-0,078	-,404**	,531**	-,602**	,416**	Pearson	U LPI FI
	Sig. (bilateral)	0,784	<,001	<,001	0,496			0,042	0,006	0,263	0,612	0,007	<,001	<,001	0,005	Sig. (bilateral)	
	N Correlación de	44	44	44	44	45		45	45	45	45	44	45	44	45	N N	
R AMN LOG	Pearson	,641**	-,548**	-,550**	,702**	-,507**			-,406**	,603**	,492**	-0,016	,797**	-,804**	,569**	Correlación de Pearson	U LSI
	Sig. (bilateral)	<,001	<,001	<,001	<,001	<,001			0,006	<,001	<,001	0,917	<,001	<,001	<,001	Sig. (bilateral)	_
	N	44	44	44	44	44	45		45	46	46	45	46	45	46	N	
R SHMN FI	Correlación de Pearson	-,421**	-,461**	-,465**	-,451**	-0,126	0,094			-0.078	-,435**	-0,124	-,350*	0,093	,950**	Correlación de Pearson	U AMN RO
K_SHWIN_F1	Sig. (bilateral)	0,004	0,002	0,001	0,002	0,417	0,546			0,611	0,003	0,422	0,018	0,548	<,001	Sig. (bilateral)	U_AMIN_RC
	N	44	44	44	44	44	44	45		45	45	44	45	44	45	N	
	Correlación de									40						Correlación de	
R_SHMD_FI	Pearson	-,626**	-,442**	-,446**	-,594**	-0,214	-0,172	,725**			,818**	,527**	,536**	-,427**	-0,28	Pearson	U_SH_MN
	Sig. (bilateral)	<,001	0,003	0,002	<,001	0,163	0,264	<,001			<,001	<,001	<,001	0,003	0,059	Sig. (bilateral)	
	N Correlación de	44	44	44	44	44	44	44	45		46	45	46	45	46	N Correlación de	
R FR MN	Pearson	-,582**	-0,042	-0,048	-,618**	0,183	-0,28	,714**	,610**			,700**	,446**	-0,248	,548**	Pearson	U FR MN
	Sig. (bilateral)	<,001	0,785	0,755	<,001	0,234	0,066	<,001	<,001			<,001	0,002	0,1	<,001	Sig. (bilateral)	
	N	44	44	44	44	44	44	44	44	45		45	46	45	46	N N	
R FR MD	Correlación de Pearson	698**	-0.149	-0,154	688**	0,073	342*	.687**	.818**	.883**			-0,211	,338*	-0,264	Correlación de Pearson	U FRMD F
	Sig. (bilateral)	<,001	0,33	0,313	<,001	0,635	0,021	<,001	<,001	<,001			0,165	0,025	0,079	Sig. (bilateral)	
	N	45	45	45	45	45	45	45	45	45	46		45	44	45	N	
n n.en	Correlación de	0.1/0	0.100	0.111	0.12	12.100	0.110	2214	0.005	41000	0.224			889**	-	Correlación de	II DAED
R_PAFR	Pearson	0,169 0,292	0,122 0,446	0,111 0,488	0,12 0,456	,434** 0,005	0,118 0,457	,321* 0,04	0,085	,418** 0,007	0,234 0,137			-,889** <,001	,376** 0,01	Pearson Sig. (bilateral)	U_PAFR
	Sig. (bilateral) N	0,292	0,446 41	0,488 41	41	41	42	0,04 41	42	41	42	42		<,001 45	46	Sig. (bilateral) N	
	N Correlación de	41	41	41	41	41	42	41	42	41	42	42		45	46	N Correlación de	
R_ENN_RC	Pearson	-0,167	-,343*	-,350*	-0,184	-0,285	0,031	0,028	,365*	0,028	0,188	-,321*			0,135	Pearson	U_ENN_MN
	Sig. (bilateral)	0,286	0,024	0,021	0,237	0,064	0,839	0,857	0,016	0,857	0,221	0,038			0,378	Sig. (bilateral)	
	N Correlación de	43	43	43	43	43	44	43	43	43	44	42			45	N	
R AI	Pearson	,626**	-,440**	-,435**	,746**	-,631**	,857**	-0,209	-,304*	-,525**	-,552**	-0,119	-0,028				
	Sig. (bilateral)	<,001	0,002	0,003	<,001	<,001	<,001	0,169	0,042	<,001	<,001	0,454	0,855				
	N	45	45	45	45	45	45	45	45	45	46	42	44				
		R PLAND LOG	R NP RC	R PD RC	R LPI LOG	R LSI	R AMN LOG	R SHMN FI	R SHMD FI	R FR MN	R FR MD	R PAFR	R ENN RC				

Tabla 5.9. Prueba de correlación de Pearson para las métricas de paisaje hídricas y las métricas de paisaje urbanas (2020)

							el suelo hídrico			II EDMD EI	II DAED	II ENN MN	TI AT
D DI AND LOC	G 1 11 1 B	U_PLAND_FI	U_NP	U_PD	U_LPI_FI	U_LSI	U_AMN_RC	U_SH_MN	U_FR_MN	U_FRMD_FI	U_PAFR	U_ENN_MN	U_AI
R_PLAND_LOG	Correlación de Pearson	0,063	-0,075	-0,075	,382**	-0,219	0,254	-0,088	-0,022	-0,144	-,344*	0,127	,332*
	Sig. (bilateral)	0,679	0,619	0,619	0,01	0,143	0,088	0,561	0,882	0,345	0,019	0,401	0,024
	N S	45	46	46	45	46	46	46	46	45	46	46	46
R_NP_RC	Correlación de Pearson	-0,074	0,17	0,171	0,022	0,188	-0,231	-0,094	-0,04	-0,133	,418**	-0,261	-0,265
	Sig. (bilateral)	0,628	0,26	0,256	0,884	0,212	0,123	0,532	0,791	0,384	0,004	0,08	0,075
	N	45	46	46	45	46	46	46	46	45	46	46	46
R_PD_RC	Correlación de Pearson	-0,074	0,17	0,171	0,022	0,188	-0,23	-0,094	-0,04	-0,132	,418**	-0,261	-0,265
	Sig. (bilateral)	0,628	0,26	0,257	0,884	0,212	0,123	0,534	0,792	0,386	0,004	0,08	0,076
	N	45	46	46	45	46	46	46	46	45	46	46	46
R_LPI_LOG	Correlación de Pearson	-0,017	-0,16	-0,161	,298*	-,306*	0,238	-0,1	-0,022	-0,109	-,427**	0,209	,328*
	Sig. (bilateral)	0,909	0,287	0,286	0,047	0,039	0,112	0,507	0,883	0,476	0,003	0,164	0,026
	N	45	46	46	45	46	46	46	46	45	46	46	46
R_LSI	Correlación de Pearson	-0,148	0,181	0,181	-0,057	0,197	-0,23	-0,151	-0,078	-0,287	,610**	-0,283	-,376*
	Sig. (bilateral)	0,333	0,229	0,227	0,711	0,189	0,124	0,316	0,606	0,056	<,001	0,057	0,01
	N	45	46	46	45	46	46	46	46	45	46	46	46
R_AMN_LOG	Correlación de Pearson	0,033	-0,221	-0,222	0,25	-,345*	,360*	0,036	0,065	0,048	-,576**	,346*	,438**
	Sig. (bilateral)	0,829	0,139	0,138	0,098	0,019	0,014	0,814	0,67	0,755	<,001	0,018	0,002
	N	45	46	46	45	46	46	46	46	45	46	46	46
R SHMN FI	Correlación de Pearson	-0,2	-0,127	-0,128	-0,137	-0,113	-0,064	-0,043	-0,006	-0,154	0,193	0,059	-0,154
	Sig. (bilateral)	0,194	0,406	0,402	0,376	0,46	0,677	0,779	0,968	0,317	0,204	0,702	0,313
	N	44	45	45	44	45	45	45	45	44	45	45	45
R SHMD FI	Correlación de Pearson	0,06	0,059	0,058	-0,067	0,077	-0,087	-0,099	-0,138	-0,118	0,189	0,025	-0,118
	Sig. (bilateral)	0,698	0,701	0,705	0,666	0,617	0,568	0,518	0,365	0,447	0,215	0,872	0,442
	N	44	45	45	44	45	45	45	45	44	45	45	45
R FR MN	Correlación de Pearson	-0,15	-0,085	-0,086	-0,236	-0,052	-0,109	-0,046	-0,038	-0,001	0,139	0,087	-0,164
K_I K_MI	Sig. (bilateral)	0,324	0,576	0,571	0,118	0,731	0,473	0,763	0,803	0,993	0,358	0,564	0,277
	N	45	46	46	45	46	46	46	46	45	46	46	46
R FR MD	Correlación de Pearson	-0,05	-0,02	-0,021	-0,174	0,017	-0,121	0,003	-0,011	0,041	0,11	0,094	-0,146
K_FK_MD	Sig. (bilateral)	0,744	0,895	0,891	0,253	0,911	0,424	0,983	0,943	0,791	0,467	0,534	0,331
	N	45	46	46	45	46	46	46	46	45	46	46	46
R PAFR	Correlación de Pearson	-,432**	-0,161	-0,162	-,365*	-0,147	-0,2	-0,215	-0.098	-0,143	0.288	0,088	-,313*
K_I AFK	Sig. (bilateral)	0,004	0,296	0,295	0,016	0,342	0,192	0,161	0,527	0,361	0,288	0,57	0,039
	N Sig. (bilateral)	43	44	0,293 44	43	0,342 44	0,192	0,161 44	0,327 44	43	0,038 44	0,5 / 44	44
D ENN DC	11												
R_ENN_RC	Correlación de Pearson	0,217	0,112	0,112	0,06	0,144	0,064	0,226	0,137	-0,02	0,046	-0,158	0,054
	Sig. (bilateral)	0,152	0,46	0,46	0,696	0,34	0,674	0,131	0,364	0,894	0,76	0,295	0,719
	N	45	46	46	45	46	46	46	46	45	46	46	46
R_AI	Correlación de Pearson	0,126	-0,097	-0,098	,346*	-0,221	0,266	-0,004	0,018	0,032	-,550**	0,204	,405**
	Sig. (bilateral)	0,41	0,521	0,519	0,02	0,141	0,074	0,977	0,904	0,833	<,001	0,173	0,005
	N	45	46	46	45	46	46	46	46	45	46	46	46

Tabla 5.10. Prueba de correlación de Pearson para las métricas de paisaje hídricas y las métricas de paisaje urbanas (2022)

			Correla	ción de las r	nétricas del pai	saje entre el	suelo hídrico y el	suelo urbano (20	022)				
		U_PLAND_FI	U_NP	U_PD	U_LPI_FI	U_LSI	U_AMN_RC	U_SH_MN	U_FR_MN	U_FRMD_FI	U_PAFR	U_ENN_MN	U_AI
R_PLAND_LOG	Correlación de Pearson	-0,29	-0,275	-0,274	-0,198	-0,256	0,076	0,049	0,146	0,19	-0,263	,383*	0,011
	Sig. (bilateral)	0,056	0,068	0,068	0,197	0,089	0,624	0,747	0,338	0,217	0,08	0,01	0,944
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_NP_RC	Correlación de Pearson	0,213	0,256	0,257	0,278	0,285	-0,082	,356*	,358*	0,082	,353*	-0,212	-0,151
	Sig. (bilateral)	0,166	0,089	0,088	0,068	0,058	0,595	0,016	0,016	0,598	0,017	0,166	0,322
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_PD_RC	Correlación de Pearson	0,214	0,255	0,255	0,276	0,284	-0,078	,360*	,358*	0,088	,350*	-0,209	-0,149
	Sig. (bilateral)	0,163	0,092	0,091	0,069	0,058	0,614	0,015	0,016	0,571	0,019	0,172	0,328
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_LPI_LOG	Correlación de Pearson	-,409**	-,352*	-,352*	-,335*	-0,283	0,018	0,082	0,183	,319*	-,351*	,479**	-0,076
	Sig. (bilateral)	0,006	0,018	0,018	0,026	0,059	0,906	0,594	0,228	0,035	0,018	0,001	0,62
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_LSI	Correlación de Pearson	0,266	,308*	,308*	,358*	,309*	-0,183	0,274	,349*	-0,018	,498**	-,318*	-0,174
	Sig. (bilateral)	0,081	0,039	0,039	0,017	0,039	0,234	0,069	0,019	0,905	<,001	0,036	0,252
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_AMN_LOG	Correlación de Pearson	-,347*	-,391**	-,391**	-,327*	-,396**	0,115	-0,228	-0,143	0,091	-,492**	,510**	0,104
	Sig. (bilateral)	0,021	0,008	0,008	0,03	0,007	0,458	0,132	0,35	0,555	<,001	<,001	0,497
	N	44	45	45	44	45	44	45	45	44	45	45	45
R_SHMN_FI	Correlación de Pearson	0,113	0,084	0,083	0,094	-0,024	-0,152	-,362*	-0,244	-,358*	0,166	-0,171	0,053
	Sig. (bilateral)	0,464	0,583	0,587	0,544	0,873	0,324	0,015	0,106	0,017	0,277	0,266	0,73
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_SHMD_FI	Correlación de Pearson	-0,037	-0,026	-0,026	0,006	-0,125	-0,075	-,466**	-,479**	-,470**	0,01	-0,128	0,112
	Sig. (bilateral)	0,813	0,867	0,864	0,968	0,414	0,629	0,001	<,001	0,001	0,949	0,407	0,462
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_FR_MN	Correlación de Pearson	,320*	0,265	0,264	0,274	0,191	-0,202	-0,168	-0,075	-0,283	0,282	-0,269	-0,026
	Sig. (bilateral)	0,034	0,079	0,08	0,072	0,209	0,189	0,27	0,624	0,063	0,061	0,078	0,865
	N	44	45	45	44	45	44	45	45	44	45	44	45
R_FR_MD	Correlación de Pearson	0,2	0,216	0,215	0,213	0,156	-0,177	-0,242	-0,236	-,398**	,300*	-0,29	-0,052
	Sig. (bilateral)	0,187	0,15	0,151	0,16	0,301	0,243	0,105	0,115	0,007	0,043	0,053	0,73
	N	45	46	46	45	46	45	46	46	45	46	45	46
R_PAFR	Correlación de Pearson	-,337*	-0,1	-0,101	-0,033	-0,128	-0,283	-0,257	0,092	-0,088	-0,039	0,18	-0,21
	Sig. (bilateral)	0,031	0,528	0,526	0,838	0,42	0,073	0,1	0,561	0,583	0,804	0,253	0,182
	N	41	42	42	41	42	41	42	42	41	42	42	42
R_ENN_RC	Correlación de Pearson	0,054	-0,011	-0,011	0,051	-0,068	0,039	-0,21	-0,21	-0,227	-0,012	-0,045	0,127
	Sig. (bilateral)	0,732	0,946	0,945	0,743	0,663	0,802	0,172	0,171	0,143	0,939	0,773	0,413
	N	43	44	44	43	44	43	44	44	43	44	44	44
R_AI	Correlación de Pearson	-,394**	-,393**	-,393**	-,399**	-,372*	0,143	-0,132	-0,096	0,159	-,529**	,462**	0,086
	Sig. (bilateral)	0,007	0,007	0,007	0,007	0,011	0,348	0,383	0,524	0,297	<,001	0,001	0,568
	N	45	46	46	45	46	45	46	46	45	46	45	46

Tabla 5.11. Modelos de Regresión Lineal a Escala Territoral 1 (10 Kilometros)

M 1.1	Mari	9	al para la Variable U 2020	2022			
Modelo	Metrica	Coeficiente	Significancia	Coeficiente	Significancia		
001	R PLAND ¹	-0,307	0,009***	-303	0,055*		
001	R ENN MN ¹	0,591	0,001***	-0,063	0,682		
002	R FR MN^2	0,075	0,537	0,144	0,283		
002	$R^{-}LSI^{2}$	0,602	0,000***	0,506	<0,001***		
002	R FR MD	0,122	0,38	0,352	0,013**		
003	$R^{-}PD^{\overline{1}}$	0,421	0,004***	0,404	0,005***		
004	$R_SH_MN^1$	0,264	0,045**	0,228	0,089*		
004	$R^{-}A^{-}MN^{1}$	-0,544	<0,001***	-0,521	<0,001***		
005	R_AI	0,061	<0,001***	-0,58	<0,001***		
005	R SH MD ¹	-0,516	0,652	-0,166	0,225		

		Regresión Lin	eal para la Variable l	U_LSI	
Modelo	Metrica		2020		2022
Modelo	Metrica	Coeficiente	Significancia	Coeficiente	Significancia
001	R_PLAND ¹	-0,199	0,193	-0,302	0,055*
001	R_ENN_MN ¹	0,106	0,484	-0,119	0,440
002	$R_FR_MN^2$	-0,074	0,625	0,101	0,508
002	$R LSI^2$	0,205	0,178	0,286	0,064*
002	R_FR_MD	0,022	0,883	0,191	0,2
003	RPD^{1}	0,188	0,216	0,314	0,038**
004	R SH MN ¹	-0,08	0,596	0,011	0,939
004	$R_A_MN^1$	-0,253	0,098*	-0,413	0,008***
005	RAI	-0,171	0,281	-0,459	0,003***
005	R SH MD^1	0,034	0,827	-0,264	0,074*

Niveles de confianza: *90%, **95%, ***99%

Fuente: Trabajo investgativo y posterior procesamiento en Fragstats y SPSS

Tabla 5.12. Modelo Ajustado de Regresión Lineal a Escala Territoral 1 (10 Kilometros)

Modelo Ajustado de Regresión Lineal para la variable U_PAFR										
Modelo	202	20	202	22	- Conclusión					
Modelo	Coeficientes	Sig.	Coeficientes	Sig.	Conclusion					
R_PLAND ¹	-1,085	0,003***	-0,732	0,057*	Pérdida de significancia					
R SHMN ¹	-0,08	0,573	0,022	0,925	-					
$R^{-}LSI^{2}$	1,221	<,001***	0,787	0,008***	Pérdida de significancia					
R_AI	1,107	0,016**	0,641	0,12	Pérdida de significancia					
R_ENN ¹	0,109	0,445	0,182	0,28	-					
R PAFR	-0,024	0,877	-0,219	0,214	-					

	Modelo Ajus	tado de Reg	resión Lineal pa	ble U_LSI	
Modelo	202	20	202	22	Conclusión
Modelo	Coeficientes		Coeficientes	Sig.	Conclusion
R PLAND ¹	-1,08	0,011**	-1,033	0,01***	Aumento de significancia
$R^{-}LSI^{2}$	0,901	0,016**	0,58	0,046**	Pérdida de significancia
R_AI	1,153	0,034**	0,732	0,082*	Pérdida de significancia
R_PAFR	-0,352	0,049**	-0,192	0,276	Pérdida de significancia
R_SHMD^1	-0,044	0,775	-0,312	0,192	-

¹Variables normalizadas en ambos periodos: 2020-2022

²Variables normalizadas en el periodo 2022

Niveles de confianza: *90%, **95%, ***99%

¹Variables normalizadas en ambos periodos: 2020-2022

²Variables normalizadas en el periodo 2022

Primer Módelo de Regresión Lineal para la Variable de Dimensión Fractal del perímetro-área del Suelo Urbano (U_PAFR)

1400

Mínimo 2022

Máximo 2022

Máximo 2022

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

Figura 5.13. Estadísticos para el primer modelo de regresión lineal para la variable U PAFR


Q3 Q4 Q5 Q5 Q6 Q6 Suelo Hídrico (R_PLAND)

Figura 5.14. Estadísticos para el segundo modelo de regresión lineal para la variable U_PAFR

— Q1 Distancia Eu Q2 Q3 Q clidiana al vecino más ce hídrico (R_ENN_MN)

Q4

Q2 Q3 ensión Fractal del perímetro-Urbano (U_PAFR)

Fuente: Elaborado por la autora con información del trabajo de campo

Figura 5.15. Estadísticos para el tercer modelo de regresión lineal para la variable U PAFR

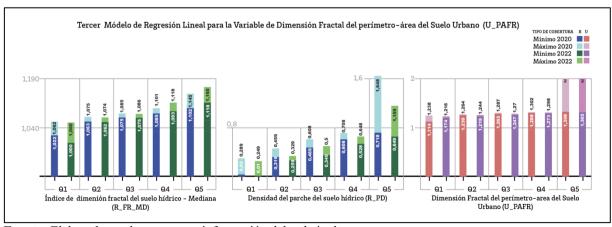


Figura 5.16. Estadísticos para el cuarto modelo de regresión lineal para la variable U PAFR

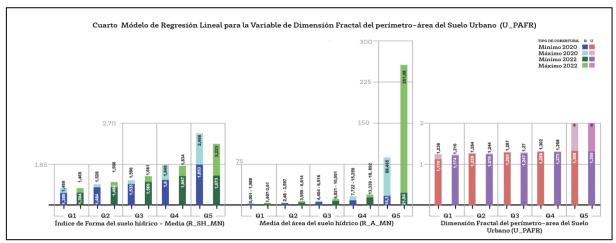
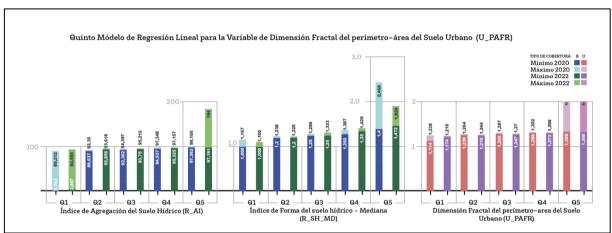



Figura 5.17. Estadísticos para el quinto modelo de regresión lineal para la variable U_PAFR

Fuente: Elaborado por la autora con información del trabajo de campo

Figura 5.18. Estadisticos para el primer modelo de regresión lineal para la variable U LSI

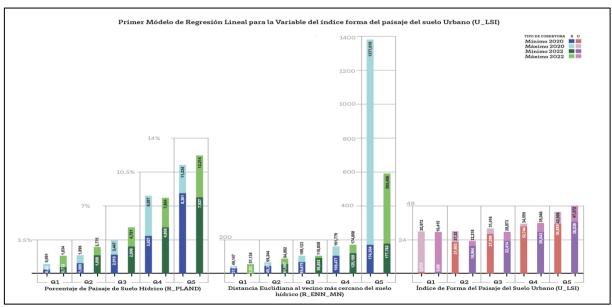


Figura 5.19. Estadisticos para el segundo modelo de regresión lineal para la variable U LSI

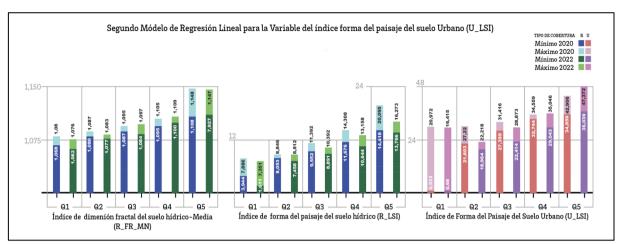
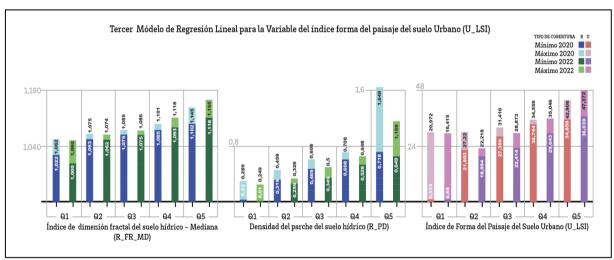
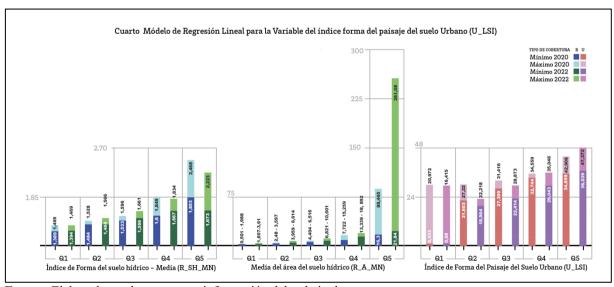




Figura 5.20. Estadisticos para el tercer modelo de regresión lineal para la variable U LSI

Fuente: Elaborado por la autora con información del trabajo de campo

Figura 5.21. Estadisticos para el cuarto modelo de regresión lineal para la variable U_LSI

Guinto Módelo de Regresión Lineal para la Variable del índice forma del paisaje del suelo Urbano (U_LSI)

TIPO DE CORRETURA. R U Mínimo 2020
Másximo 2022
Másximo

Figura 5.22. Estadisticos para el quinto modelo de regresión lineal para la variable U_LSI

Anexo 6: Fichas descriptivas de análisis estadísticos

Las siguientes fichas detallan los procesos estadísticos para la obtención de las resultados sobre las diferencias encontradas tanto a lo largo de ejes fluviales, como de temporalidad y usos de suelo.

Grupo 1.1. RT1 (10 km) -Análisis estadístico de diferencias entre ejes fluviales para el año 2020

Recorte Territorial:	10 kilometros		Núi	mero de Casos: 46		Año:202
		Uso de S	uelo	•		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		Suelo A	grícola	Suelo Urbano
Pruebas de normali	dad					
Metri	cas del Paisaje	Kolmog Estadístico	orov-S gl	Smirnov Sig.	Distribución Normal	Distribución Lib
1	PLAND	0,165	46	0,003***		X
2	NP	0,152	46	0,009***		X
3	PD	0,152	46	0,01***		X
4	LPI	0,135	46	0,036**		X
5	LSI	0,136	46	0,033**		X
6	A MN	0,237	46	<.001***		X
7	SH_MN	0,081	46	,200¹	X	
8	SH MD	0,452	46	<.001***		X
9	FR_MN	0,071	46	,200¹	X	
10	FR MD	0,173	46	0.001***		X
11	PAFR	0,173	46	,200¹	X	71
12	ENN MN	0,183	46	<,001***	71	X
	_	*		,200 ¹	X	Λ
13	AI	0,09	46	,200	A	
	nferior de la significación ver Wallis para muestras indepen					
Hipótesis nula	•			Sig.	Decisión	
No hay diferencias	en PLAND entre categorías	de EJE.		0,069*	Rechace la hipó	tesis nula.
No hay diferencias	en NP entre categorías de EJ	E.		0,432	Conserve la hipe	ótesis nula.
No hay diferencias	en PD entre categorías de EJ	E.		0,432	Conserve la hipo	ótesis nula.
-	en LPI entre categorías de E			0,004***	Rechace la hipó	
-	en LSI entre categorías de E			0,908	Conserve la hipo	
•	en A_MN entre categorías d			0,388	Conserve la hipo	
	en SH_MD entre categorías			0,547	Conserve la hipe	
-	en FR_MD entre categorías			0,043**	Rechace la hipó	
-	en ENN_MN entre categoría			0,017**	Rechace la hipó	
	stras con distribución normal	is de LoL.		0,017	тесниес на пъро	costs fraid.
1		Suma de cuadrados	gl	Media cuadrática	F	Sig.
TH MN	Entro amunos	0,012	<u>gr</u> 1	0,012	5,728	0,021**
SH_MN	Entre grupos Dentro de grupos	0,012	44	0,012	3,728	0,021**
	Total	0,1	45	0,002		
R MN	Entre grupos	0	1	0	9,818	0,003***
	Dentro de grupos	0,002	44	0	>,0.0	-,000
	Total	0,002	45			
PAFR	Entre grupos	0	1	0	0,155	0,696
	Dentro de grupos	0,084	44	0,002		
	Total	0,085	45			
AI .	Entre grupos	0,055	1	0,055	0,068	0,796
	Dentro de grupos	35,513	44	0,807		

Recorte Territori	al: 10 kilometros		Núr	nero de Casos: 4	16	Año:20
		Uso	de Su	elo		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	·	Si	uelo Agrícola	Suelo Urbano
ruebas de norm	alidad					
Metrio	cas del Paisaje	Kolmo Estadístico	gorov-S	Smirnov Sig.	Distribución Normal	Distribución Libr
1	PLAND	0,154	46	0,008***		X
2	NP	0,216	46	<,001***		X
3	PD	0,216	46	<,001***		X
4	LPI	0,279	46	<,001***		X
5	LSI	0,126	46	0,065	X	
6	A_MN	0,298	46	<,001***		X
7	SH_MN	0,103	46	,2001	X	
8	SH_MD	0,146	46	0,015**		X
9	FR_MN	0,079	46	,2001	X	
10	FR_MD	0,084	46	,2001	X	
11	PAFR	0,113	46	0,182	X	
12	ENN_MN	0,146	46	0,016**		X
13	AI	0,101	46	,2001	X	
Casos pérdidos						
rueba de Krusk	al-Wallis para muestras	independientes				
Hipótesis nula				Sig.	Decisión	
-	ias en PLAND entre cat	-		0,511	Conserve la hip	
	ias en NP entre categorí			0,68	Conserve la hip	
-	ias en PD entre categorí			0,69	Conserve la hip	
-	ias en LPI entre categor			0,447	Conserve la hip	
	ias en A_MN entre cate			0,598	Conserve la hip	
-	ias en SH_MD entre cat	-		0,005***	Rechace la hipó	
	ias en ENN MN entre c uestras con distribución			0,748	Conserve la hip	ótesis nula.
		Suma de cuadrados	gl	Media cuadrát	ica F	Sig.
LSI	Entre grupos	1,127	1	1,127	0,014	0,906
	Dentro de grupos	3540,6	44	80,468		
	Total	3541,726	45			
H_MN	Entre grupos	0,094	1	0,094	10,556	0,002***
	Dentro de grupos	0,393	44	0,009		
	Total	0,487	45			
R_MN	Entre grupos	0,001	1	0,001	7,23	0,01***
_	Dentro de grupos	0,007	44	0	•	•
	Total	0,008	45			
	Entre grupos	0,001	1	0,001	9,267	0,004***
R MD	Dentro de grupos	0,007	44	0	-,	,
R_MD	Total	0,008	45	-		
R_MD		0,019	1	0,019	2,269	0,139
				0,009	-,>	-,
R_MD AFR	Entre grupos		44	-,		
	Entre grupos Dentro de grupos	0,376	44 45			
AFR	Entre grupos Dentro de grupos Total	0,376 0,396	45	3 404	0.052	0.82
	Entre grupos Dentro de grupos Total Entre grupos	0,376 0,396 3,404	45 1	3,404	0,052	0,82
AFR	Entre grupos Dentro de grupos Total	0,376 0,396	45	3,404 65,186	0,052	0,82

Recorte Territorial: 10 kilometros Número de Casos: 46						Año:20
		Uso d	e Suelo)		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	ì	Suelo .	Agrícola	Suelo Urbano
Pruebas de norma	lidad					
36	110	Kolmog	gorov-S	Smirnov	Distribución	D' . '' . '' . T''
Metri	cas del Paisaje	Estadístico	gl	Sig.	Normal	Distribución Lib
1	PLAND	0,202	46	<,001***		X
2	NP	0,165	46	0,003***		X
3	PD	0,166	46	0,003***		X
4	LPI	0,238	46	<,001***		X
5	LSI	0,113	46	0,175	X	
6	A MN	0,248	46	<,001***		X
7	SH MN	0,22	46	<,001***		X
8	SH_MD	0,249	46	<,001***		X
9	FR MN	0,124	46	0,072	X	
10	FR MD	0,115	46	0,152	X	
11	PAFR	0,399	46	<,001***		X
12	ENN MN	0,192	46	<,001***		X
13	AI	0,126	46	*	X	
Casos pérdidos	inferior de la significació					
) Casos pérdidos Prueba de Kruska				Sig.	Decisión	
Casos pérdidos Prueba de Kruska Hipótesis nula		ependientes		Sig. 0,002***	Decisión Rechace la hipóte	sis nula.
O Casos pérdidos Prueba de Kruska Hipótesis nula No hay diferencia	l-Wallis para muestras ind	ependientes orías de EJE.				
Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia	l-Wallis para muestras ind	ependientes orías de EJE. de EJE.		0,002***	Rechace la hipóte	esis nula.
Prueba de Kruska Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia No hay diferencia No hay diferencia	I-Wallis para muestras ind as en PLAND entre categor as en NP entre categorías o as en PD entre categorías o as en LPI entre categorías	lependientes prías de EJE. de EJE. de EJE. de EJE.		0,002*** 0,132	Rechace la hipóte Conserve la hipót	esis nula. esis nula.
O Casos pérdidos Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia No hay diferencia No hay diferencia	I-Wallis para muestras ind as en PLAND entre categor as en NP entre categorías o as en PD entre categorías o	lependientes prías de EJE. de EJE. de EJE. de EJE.		0,002*** 0,132 0,125	Rechace la hipóte Conserve la hipóte Conserve la hipóte	esis nula. esis nula. sis nula.
O Casos pérdidos Prueba de Kruska Hipótesis nula No hay diferencia	I-Wallis para muestras ind as en PLAND entre categor as en NP entre categorías o as en PD entre categorías o as en LPI entre categorías	rías de EJE. de EJE. de EJE. de EJE. de EJE. ás de EJE.		0,002*** 0,132 0,125 <,001***	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte	esis nula. esis nula. sis nula. sis nula.
O Casos pérdidos Prueba de Kruska Hipótesis nula No hay diferencia	I-Wallis para muestras ind as en PLAND entre categoras en NP entre categorías en as en PD entre categorías en as en LPI entre categorías as en A_MN entre categor	ependientes orías de EJE. de EJE. de EJE. de EJE. ías de EJE. orías de EJE.		0,002*** 0,132 0,125 <,001*** <,001***	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte	esis nula. esis nula. sis nula. sis nula. esis nula.
Prueba de Kruska Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia No hay diferencia No hay diferencia No hay diferencia No hay diferencia No hay diferencia	I-Wallis para muestras ind as en PLAND entre categoras en NP entre categorías en as en PD entre categorías en as en LPI entre categorías as en A_MN entre categoras en SH_MN entre categor	ependientes orías de EJE. de EJE. de EJE. de EJE. ías de EJE. orías de EJE. orías de EJE.		0,002*** 0,132 0,125 <,001*** <,001*** 0,403	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula.
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categoras en PD entre categorías es en LPI entre categorías as en A_MN entre categoras es en SH_MN entre categoras en SH_MD entre c	lependientes orías de EJE. de EJE. de EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE.		0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categorías en Sen LPI entre categorías en LPI entre categorías es en LPI entre categorías es en SH_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categorás en PAFR entre categorías en PAFR entre categorías en PAFR entre categorías	rías de EJE. de EJE. de EJE. de EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE. gorías de EJE.		0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categoras en PD entre categorías en EPI entre categorías en EPI entre categorías en SH_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categoras en ENN_MN entre categoras en ENN	rías de EJE. de EJE. de EJE. de EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE. gorías de EJE.	gl	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categoras en PD entre categorías en EPI entre categorías en EPI entre categorías en SH_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categoras en ENN_MN entre categoras en ENN	rías de EJE. de EJE. de EJE. de EJE. ías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. gorías de EJE.	gl 1	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruska Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia	I-Wallis para muestras ind as en PLAND entre categoras as en NP entre categorías of as en PD entre categorías as en LPI entre categor as en SH_MN entre categor as en SH_MD entre categor as en PAFR entre categorías as en ENN_MN entre categorías as en ENN_MN entre categorías	lependientes orías de EJE. de EJE. de EJE. áas de EJE. orías de EJE. orías de EJE. orías de EJE. as de EJE. gorías de EJE. gorías de EJE.		0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruska Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categorías en Sen EN entre categorías en EN entre categorías es en LPI entre categorías es en A_MN entre categoras en SH_MN entre categoras en SH_MD entre categoras en PAFR entre categoras en ENN_MN entre categor	lependientes orías de EJE. de EJE. de EJE. ide EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE. gorías de EJE. gorías de EJE. suma de cuadrados 72,21	1	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categorías en Sen PD entre categorías en Sen AMN entre categorías es en SH_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categorías en ENN_MN entre categorías en Entre grupos	lependientes orías de EJE. de EJE. de EJE. órias de EJE. orías de EJE. orías de EJE. orías de EJE. gorías de EJE. gorías de EJE. sumal Suma de cuadrados 72,21 470,035	1 44	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categorias en PD entre categorias en PD entre categorias en PD entre categorias en EPI entre categorias en A_MN entre categorias en SH_MN entre categorias en SH_MD entre categorias en PAFR entre categorias en ENN_MN ent	lependientes orías de EJE. de EJE. de EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE. gorías de EJE. gorías de EJE. gorías de EJE. 470,035 542,245	1 44 45	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. Sig. 0,013**
Prueba de Kruskal Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categoras en NP entre categoras en EPI entre categoras en A_MN entre categoras en SH_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categoras en ENN_MN entre categoras en ENN_M	rías de EJE. de EJE. de EJE. de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. sorías de EJE. gorías de EJE. gorías de EJE. 470,035 542,245	1 44 45 1	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. Sig. 0,013**
Prueba de Kruskal Hipótesis nula No hay diferencia	as en PLAND entre categoras en NP entre categoras en NP entre categoras en PD entre categoras en LPI entre categoras en A_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categoras en ENN_MN entre categoras en Entre grupos Dentro de grupos Dentro de grupos Dentro de grupos Dentro de grupos	rías de EJE. de EJE. de EJE. de EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE. sas de EJE. gorías de EJE. gorías de EJE. mal Suma de cuadrados 72,21 470,035 542,245 0 0,014	1 44 45 1 44	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. Sig. 0,013**
Prueba de Kruska Prueba de Kruska Hipótesis nula No hay diferencia No hay diferencia	as en PLAND entre categoras en NP entre categorías en PD entre categorías en EPI entre categorías en EPI entre categorías en SH_MN entre categoras en SH_MD entre categoras en SH_MD entre categoras en PAFR entre categorías en ENN_MN entre categorías en Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total	rías de EJE. de EJE. de EJE. de EJE. ias de EJE. orías de EJE. orías de EJE. orías de EJE. sas de EJE. gorías de EJE. gorías de EJE. 470,035 542,245 0 0,014 0,014	1 44 45 1 44 45	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683 0 0	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót Conserve la hipót F 6,76	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. O,013**
Prueba de Kruskal Hipótesis nula No hay diferencia	I-Wallis para muestras ind as en PLAND entre categor as en NP entre categorías o as en PD entre categorías o as en LPI entre categorías as en A_MN entre categor as en SH_MD entre categor as en SH_MD entre categor as en PAFR entre categor as en PAFR entre categor as en ENN_MN entre cate estras con distribución nor Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos	rías de EJE. de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. sas de EJE. gorías de EJE. as de EJE. gorías de EJE. orías de EJE.	1 44 45 1 44 45	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683 0 0	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót Conserve la hipót F 6,76	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. O,013**
Prueba de Kruskal Hipótesis nula No hay diferencia Prueba F para mue LSI FR_MN	as en PLAND entre categorias as en PD entre categorias as en PD entre categorias as en PD entre categorias as en LPI entre categorias as en SH_MN entre categorias en SH_MD entre categorias en PAFR entre categorias en PAFR entre categorias en ENN_MN entre categorias en Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Dentro de grupos Total Entre grupos Dentro de grupos	rías de EJE. de EJE. de EJE. de EJE. fías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. sas de EJE. gorías de EJE. mal Suma de cuadrados 72,21 470,035 542,245 0 0,014 0,014 0 0,036	1 44 45 1 44 45 1 44	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683 0 0	Rechace la hipóte Conserve la hipót Conserve la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót Conserve la hipót F 6,76	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. O,013**
Prueba de Kruskal Hipótesis nula No hay diferencia	as en PLAND entre categorias as en PD entre categorias as en PD entre categorias as en PD entre categorias as en LPI entre categorias as en A_MN entre categorias en SH_MN entre categorias en SH_MD entre categorias en PAFR entre categorias en ENN_MN entre categorias en Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total	rías de EJE. de EJE. de EJE. de EJE. órias de EJE. orias de EJE. orias de EJE. orias de EJE. orias de EJE. sas de EJE. sas de EJE. as de EJE. suma de cuadrados 72,21 470,035 542,245 0 0,014 0,014 0 0,036 0,036	1 44 45 1 44 45 1 44 45	0,002*** 0,132 0,125 <,001*** <,001*** 0,403 0,319 0,545 0,447 Media cuadrática 72,21 10,683 0 0 0 0,001	Rechace la hipóte Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte Conserve la hipót Onserve la hipót Onserve la hipót Onserve la hipót	esis nula. esis nula. sis nula. sis nula. esis nula. esis nula. esis nula. esis nula. esis nula. Sig. 0,013** 0,505

Recorte Territorial:	: 10 kilometros		Núı	mero de Casos: 46		Año:202		
Uso de Suelo								
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	ı	Suelo	Agrícola	Suelo Urbano		
Pruebas de normali	idad							
Metrico	as del Paisaje	Kolmog	gorov-S	mirnov	Distribución	Distribución Lib		
Wictifica	is del i aisaje	Estadístico	gl	Sig.	Normal	Distribucion Lib		
1	PLAND	0,168	46	0,002***		X		
2	NP	0,166	46	0,003***		X		
3	PD	0,166	46	0,003***		X		
4	LPI	0,247	46	<,001***		X		
5	LSI	0,109	46	,2001	X	77		
6	A_MN	0,339	46	<,001***		X		
7	SH_MN	0,148	46	0,013**		X		
8	SH_MD	0,246	46	<,001***	X	X		
9	FR_MN	0,085	46	,2001	Λ	X		
10 11	FR_MD PAFR	0,215 0,082	46	<,001*** ,200¹	X	Λ		
	ENN MN	0,082	46 46	<.001***	Α	X		
	EMIN_MIN	*	46	0,041**		X		
Casos pérdidos	AI inferior de la significació ·Wallis para muestras inc		40	0,071				
13 Esto es un límite i O Casos pérdidos Prueba de Kruskal-	inferior de la significació	ón verdadera.	40	,	Decisión			
13 Esto es un límite i O Casos pérdidos Prueba de Kruskal-	inferior de la significació	ón verdadera.	40	Sig. 0,562	Decisión Conserve la hipóto	esis nula.		
13 Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	inferior de la significació	ón verdadera. dependientes orías de EJE.	40	Sig.	Decisión Conserve la hipóto Conserve la hipóto			
13 Desto es un límite i Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias No hay diferencias	inferior de la significació Wallis para muestras inc	dependientes orías de EJE. de EJE.	40	Sig. 0,562	Conserve la hipóte	esis nula.		
13 Desto es un límite i Desto	wallis para muestras inces en PLAND entre categos en NP entre categorías	dependientes orías de EJE. de EJE. de EJE.	40	Sig. 0,562 0,198	Conserve la hipóte Conserve la hipóte	esis nula. esis nula.		
13 Description 12 Esto es un límite in 20 Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias No hay diferencias No hay diferencias No hay diferencias	wallis para muestras inces en PLAND entre categorias en PD entre categorias	dependientes orías de EJE. de EJE. de EJE. s de EJE.	40	Sig. 0,562 0,198 0,185	Conserve la hipóte Conserve la hipóte Conserve la hipóte	esis nula. esis nula. esis nula.		
13 Description of the control of the	Wallis para muestras inc s en PLAND entre catego s en NP entre categorías s en LPI entre categorías s en LPI entre categorías s en A_MN entre catego s en SH_MN entre catego	dependientes orías de EJE. de EJE. de EJE. s de EJE. rías de EJE. orías de EJE.	40	Sig. 0,562 0,198 0,185 0,193	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte	esis nula. esis nula. esis nula. esis nula.		
13 Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras inces en PLAND entre categorías en NP entre categorías en LPI entre categorías en A_MN entre categorías en SH_MN entre categorías en SH_MD entre categorí	dependientes orías de EJE. de EJE. de EJE. s de EJE. rías de EJE. orías de EJE. orías de EJE.	40	Sig. 0,562 0,198 0,185 0,193 0,146	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. sis nula.		
Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras inces en PLAND entre categorias en PD entre categorias en LPI entre categorias en A_MN entre categorias en SH_MN entre categorias en SH_MD entre categori	dependientes orías de EJE. de EJE. de EJE. rías de EJE. rías de EJE. orías de EJE. orías de EJE.	40	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082*	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula.		
Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras inces en PLAND entre categorías en PD entre categorías en LPI entre categorías en A_MN entre categorías en SH_MN entre categorías en SH_MD entre categorías en FR_MD entre categorías en ENMO entre cate	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE.	40	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes Conserve la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula.		
Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras inces en PLAND entre categorias en PD entre categorias en LPI entre categorias en A_MN entre categorias en SH_MN entre categorias en SH_MD entre categori	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE.	40	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082*	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula.		
13 Desto es un límite in Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras inces en PLAND entre categorías en PD entre categorías en LPI entre categorías en A_MN entre categorías en SH_MN entre categorías en SH_MD entre categorías en FR_MD entre categorías en ENMO entre cate	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. dorías de EJE. dorías de EJE. dorías de EJE.	40	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes Conserve la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula.		
13 Desto es un límite in Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras income sen PLAND entre categorías sen PD entre categorías sen LPI entre categorías sen A_MN entre categorías sen SH_MD entre categorías sen FR_MD entre categorías sen FR_MD entre categorías sen FR_MD entre categorías sen ENN_MN entre categorías sen ENN_MN entre categorías sen ENN_MN entre categorías sen AI entre categor	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. dorías de EJE. dorías de EJE. dorías de EJE.	gl	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes Conserve la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula.		
13 Desto es un límite i Desto	Wallis para muestras income sen PLAND entre categorías sen PD entre categorías sen LPI entre categorías sen A_MN entre categorías sen SH_MD entre categorías sen FR_MD entre categorías sen FR_MD entre categorías sen FR_MD entre categorías sen ENN_MN entre categorías sen ENN_MN entre categorías sen ENN_MN entre categorías sen AI entre categor	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE.		Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055*	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes Conserve la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. sis nula. esis nula.		
13 Desto es un límite i Desto	eWallis para muestras income se en PLAND entre categorías se en PD entre categorías se en LPI entre categorías se en LPI entre categorías se en SH_MN entre catego se en SH_MD entre catego se en FR_MD entre catego se en FR_MD entre catego se en ENN_MN entre categorías of the ENN_MN entre categorías	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. egorías de EJE. de EJE. sumal Suma de cuadrados 815,198 4410,412	gl 1 44	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes Rechace la hipótes Conserve la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. sis nula. Sig nula.		
Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras income sen PLAND entre categorías sen PD entre categorías sen LPI entre categorías sen A_MN entre categorías sen SH_MD entre categorías sen SH_MD entre categorías sen FR_MD entre categorías sen ENN_MN entre categorías sen ENN_MN entre categorías sen ENN_MN entre categorías sen AI entre categorías of the categorías sen AI entre categorías of the categorías con distribución no Entre grupos Dentro de grupos Total	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. egorías de EJE. de EJE. suma de Cuadrados 815,198 4410,412 5225,61	gl 1 4 45	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática 815,198 100,237	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipótes F 8,133	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. esis nula. Sig. 0,007***		
Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras income se en PLAND entre categorías se en PD entre categorías se en LPI entre categorías se en A_MN entre categorías se en SH_MN entre categorías se en SH_MD entre categorías se en FR_MD entre categorías se en ENN_MN entre categorías se en ENN_MN entre categorías de la come se en AI entre categorías de la come de la come se en AI entre categorías de la come de	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. egorías de EJE. de EJE. egorías de EJE. de EJE. ormal Suma de cuadrados 815,198 4410,412 5225,61	gl 1 44 45	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática 815,198 100,237	Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipóte Rechace la hipótes Rechace la hipótes Rechace la hipótes Conserve la hipótes	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. sis nula. Sig nula.		
Esto es un límite i O Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras income se en PLAND entre categorías se en PD entre categorías se en LPI entre categorías se en A_MN entre categorías se en SH_MD entre categorías se en SH_MD entre categorías se en FR_MD entre categorías se en ENN_MN entre categorías se en ENN_MN entre categorías de la come se en AI entre categoría de la come	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. egorías de EJE. de EJE. ormal Suma de cuadrados 815,198 4410,412 5225,61 0 0,002	gl 1 44 45 1 44	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática 815,198 100,237	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipótes F 8,133	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. esis nula. Sig. 0,007***		
13 Esto es un límite i D Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias LSI FR_MN	Wallis para muestras income se en PLAND entre categorías se en PD entre categorías se en A_MN entre categorías se en A_MN entre categorías se en SH_MD entre categorías se en FR_MD entre categorías se en FR_MD entre categorías se en FR_MD entre categorías se en ENN_MN entre categorías de se en A_MN entre categorías de se en A_MD entre categ	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. segorías de EJE. de EJE. orías de EJE. de EJE. orías de EJE.	gl 1 44 45 1 44 45	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática 815,198 100,237	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte F 8,133	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. Sis nula. Sig. 0,007***		
13 Prueba de Kruskal- Prueba de Kruskal- Hipótesis nula No hay diferencias	Wallis para muestras income se en PLAND entre categorías se en PD entre categorías se en AMN entre categorías se en AMN entre categorías se en SH_MD entre categorías se en FR_MD entre categorías se en FR_MD entre categorías se en FR_MD entre categorías se en ENN_MN entre categorías of en EN	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. o	gl 1 44 45 1 44 45 1	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática 815,198 100,237 0 0	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipótes F 8,133	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. esis nula. Sig. 0,007***		
13 1 Esto es un límite i o Casos pérdidos Prueba de Kruskal- Hipótesis nula No hay diferencias LSI FR_MN	Wallis para muestras income se en PLAND entre categorías se en PD entre categorías se en A_MN entre categorías se en A_MN entre categorías se en SH_MD entre categorías se en FR_MD entre categorías se en FR_MD entre categorías se en FR_MD entre categorías se en ENN_MN entre categorías de se en A_MN entre categorías de se en A_MD entre categ	dependientes orías de EJE. de EJE. de EJE. rías de EJE. orías de EJE. orías de EJE. orías de EJE. orías de EJE. segorías de EJE. de EJE. orías de EJE. de EJE. orías de EJE.	gl 1 44 45 1 44 45	Sig. 0,562 0,198 0,185 0,193 0,146 0,102 0,044** 0,082* 0,908 0,055* Media cuadrática 815,198 100,237	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte F 8,133	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula. sis nula. esis nula. Sis nula. Sig. 0,007***		

Recorte Territorial	: 10 kilometros		Núı	mero de Casos: 4	16	Año:202
		Uso	de Suel	0		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agu	ıa	Sı	uelo Agrícola	Suelo Urbano
Pruebas de normal	idad					
Metric	as del Paisaje	Kolmo Estadístico	gorov-S gl	mirnov Sig.	Distribución Normal	Distribución Libr
1	PLAND	0,27	46	<,001***		X
2	NP	0,075	46	,200 ¹	X	
3	PD	0,075	46	$,200^{1}$	X	
4	LPI	0,446	46	<,001***		X
5	LSI	0,102	46	,200 ¹	X	
6	A_MN	0,203	46	<,001***		X
7	SH_MN	0,093	46	,200 ¹	X	
8	SH_MD	0,198	46	<,001***		X
9	FR_MN	0,073	46	,2001	X	
10	FR_MD	0,214	46	<,001***		X
11	PAFR	0,099	46	$,200^{1}$	X	
12	ENN_MN	0,118	46	0,12	X	
13	AI	0,063	46	,2001	X	
¹ Esto es un límite i	inferior de la significacion	ón verdadera.				0 Casos pérdid
Prueba de Kruskal-	-Wallis para muestras in	dependientes				
Hipótesis nula				Sig.	Decisión	
No hay diferencias	s en PLAND entre categ	orías de EJE.		0,212	Conserve la hipóte	sis nula.
No hay diferencias	s en LPI entre categorías	de EJE.		0,146	Conserve la hipóte	sis nula.
-	s en A_MN entre catego			0,069*	Rechace la hipótes	sis nula.
•	s en SH_MD entre categ			0,691	Conserve la hipóte	
	s en FR_MD entre categ			0,56	Conserve la hipóte	
	stras con distribución no			,	1	
1		Suma de cuadrados	gl	Media cuadráti	ca F	Sig.
PAFR	Entre grupos	0,01	1	0,01	8,905	0,005***
IAIK	Dentro de grupos	0,051	44	0,001	6,903	0,003
	Total	0,061	45	0,001		
ENDL MOL				202.62	0.600	0.411
ENN_MN	Entre grupos	383,63	1	383,63	0,688	0,411
	Dentro de grupos	24519,341	44	557,258		
	Total	24902,972	45			
AI	Entre grupos	82,371	1	82,371	6,541	0,014**
AI	Entre grupos Dentro de grupos	554,134	44	82,371 12,594	6,541	0,014**
	Entre grupos Dentro de grupos Total	554,134 636,505	44 45	12,594	,	
AI FR_MN	Entre grupos Dentro de grupos Total Entre grupos	554,134 636,505 0	44 45 1	12,594	1,27	0,014**
	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	554,134 636,505 0 0,001	44 45 1 44	12,594	,	
	Entre grupos Dentro de grupos Total Entre grupos	554,134 636,505 0	44 45 1	12,594	1,27	
	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	554,134 636,505 0 0,001	44 45 1 44	12,594	,	
FR_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total	554,134 636,505 0 0,001 0,001	44 45 1 44 45	12,594 0 0	1,27	0,266
FR_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos	554,134 636,505 0 0,001 0,001 0,001	44 45 1 44 45 1	12,594 0 0 0,001	1,27	0,266
FR_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Dentro de grupos	554,134 636,505 0 0,001 0,001 0,001 0,035	44 45 1 44 45 1 44	12,594 0 0 0,001	1,27	0,266
FR_MN SH_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Dentro de grupos Total	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036	44 45 1 44 45 1 44 45	12,594 0 0 0,001 0,001	1,27	0,266
FR_MN SH_MN	Entre grupos Dentro de grupos Total Entre grupos	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205	44 45 1 44 45 1 44 45	12,594 0 0 0,001 0,001 30,205	1,27	0,266
FR_MN SH_MN LSI	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Total Entre grupos Dentro de grupos Total	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205 1837,006 1867,21	44 45 1 44 45 1 44 45 1 44	12,594 0 0,001 0,001 30,205 41,75	1,27	0,266 0,185 0,4
FR_MN SH_MN	Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205 1837,006 1867,21 634,817	44 45 1 44 45 1 44 45 1 44 45	12,594 0 0 0,001 0,001 30,205 41,75 634,817	1,27 1,817 0,723	0,266
FR_MN SH_MN LSI	Entre grupos Dentro de grupos Total Entre grupos	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205 1837,006 1867,21 634,817 3259490,509	44 45 1 44 45 1 44 45 1 44 45 1 44 45	12,594 0 0,001 0,001 30,205 41,75	1,27 1,817 0,723	0,266 0,185 0,4
FR_MN SH_MN LSI	Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205 1837,006 1867,21 634,817 3259490,509 3260125,326	44 45 1 44 45 1 44 45 1 44 45 1 44 45	12,594 0 0 0,001 0,001 30,205 41,75 634,817 74079,33	1,27 1,817 0,723	0,266 0,185 0,4 0,927
FR_MN SH_MN LSI	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205 1837,006 1867,21 634,817 3259490,509 3260125,326 0,071	44 45 1 44 45 1 44 45 1 44 45 1 44 45	12,594 0 0 0,001 0,001 30,205 41,75 634,817 74079,33	1,27 1,817 0,723	0,266 0,185 0,4
FR_MN SH_MN LSI	Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total	554,134 636,505 0 0,001 0,001 0,001 0,035 0,036 30,205 1837,006 1867,21 634,817 3259490,509 3260125,326	44 45 1 44 45 1 44 45 1 44 45 1 44 45	12,594 0 0 0,001 0,001 30,205 41,75 634,817 74079,33	1,27 1,817 0,723	0,266 0,185 0,4 0,927

Grupo 1.2. RT1 (10 km) - Análisis estadístico de diferencias entre ejes fluviales para el año 2022

	FICHA I	DE ANALISIS ESTAD	ISTÍC	OS-DIFEREN	ICIAS	
Recorte Territorial:	46	Año:20				
		Uso de Si	uelo			
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		Su	elo Agrícola	Suelo Urbano
ruebas de normali	dad					
Metri	cas del Paisaje	Kolmogo Estadístico	orov-S	Smirnov Sig.	Distribución Normal	Distribución Lib
1	PLAND	0,159	46	0,005***		X
2	NP	0,172	46	0,002***		X
3	PD	0,173	46	0,001***		X
4	LPI	0,123	46	0,076	X	
5	LSI	0,075	46	,2001	X	
6	A_MN	0,356	46	<,001***		X
7	SH MN	0,166	46	0,003***		X
8	SH MD	0,355	46	<,001***		X
9	FR MN	0,092	46	,2001	X	
10	FR MD	0,129	46	0,055	X	
11	PAFR	0,359	46	<.001***		X
12	ENN MN	0,374	46	<,001***		X
13	AI	0,121	46	0,091	X	
		•		-,,		
	nferior de la significación ver	rdadera.				
Casos pérdidos	Wallis para muestras indeper	diantag				
	wants para muestras mueper	idientes		a:	5	
lipótesis nula	DY 137D /	1. 575		Sig.	Decisión	
•	en PLAND entre categorías			0,073*	Rechace la hipó	
-	en NP entre categorías de E.			0,013**	Rechace la hipó	
-	en PD entre categorías de E.			0,013**	Rechace la hipó	
	en A_MN entre categorías d			0,017**	Rechace la hipó	
•	en SH_MN entre categorías			0,132	Conserve la hipo	
-	en SH_MD entre categorías			0,193	Conserve la hipo	
-	en PAFR entre categorías de			0,008***	Rechace la hipó	
	en ENN_MN entre categoría	as de EJE.		0,231	Conserve la hipo	ótesis nula.
rueba F para mues	stras con distribución normal			36.11		a:
		Suma de cuadrados	gl	Media cuadrát		Sig.
_PI	Entre grupos	37,657	1	37,657	0,086	0,77
	Dentro de grupos	19201,678	44	436,402		
	Total	19239,335	45			
LSI	Entre grupos	271,498	1	271,498	6,489	0,014**
	Dentro de grupos	1840,81	44	41,837		
	Total	2112,308	45			
R_MN	Entre grupos	0	1	0	0,137	0,713
	Dentro de grupos	0,005	44	0		
	Total	0,005	45			
R_MD	Entre grupos	0	1	0	0,284	0,597
	Dentro de grupos	0,01	44	0		
	Total	0,01	45			
	Entre grupos	5,912	1	5,912	6,662	0,013**
A1	Dentro de grupos	39,044	44	0,887	,	•
AI	Total	44,956	45	,		
ΛI		,				
AI Niveles de confianz	za: *90%, **95%, ***99%					
		DE ANALIGICECTAD	ICTÍ	COC DIFEREN	tous —	
	FICHA I	DE ANALISIS ESTAD		COS-DIFEREN de Casos: 46	CIAS	Año:20

Pruebas de norma	Suelo Natural no Bocoso	Cuerpo de Agua	a	Suelo A	grícola	Suelo Urbano
	alidad					
		Kolmo	gorov-S	mirnov	Distribución	
Metric	as del Paisaje	Estadístico	gl	Sig.	Normal	Distribución Libi
1	PLAND	0,167	46	0,003***		X
2	NP	0,238	46	<,001***		X
3	PD	0,238	46	<,001***		X
4	LPI	0,348	46	<,001***		X
5	LSI	0,156	46	0,007***		X
6	A_MN	0,188	46	<,001***		X
7	SH_MN	0,099	46	,200 ¹	X	
8	SH_MD	0,24	46	<,001***		X
9	FR_MN	0,118	46	0,118	X	
10	FR_MD	0,137	46	0,03**		X
11	PAFR	0,277	46	<,001***		X
12	ENN_MN	0,271	46	<,001***		X
13	AI	0,118	46	0,116	X	
Esto es un límite	e inferior de la significa	ción verdadera.				
Casos pérdidos						
rueba de Kruska	al-Wallis para muestras	independientes				
Hipótesis nula				Sig.	Decisión	
No hay diferenci	as en PLAND entre car	tegorías de EJE.		0,007***	Rechace la hipót	esis nula.
No hay diferenci	as en NP entre categor	as de EJE.		0,185	Conserve la hipó	
No hay diferenci	as en PD entre categor	as de EJE.		0,185	Conserve la hipó	tesis nula.
No hay diferenci	as en LPI entre categor	ías de EJE.		0,007***	Rechace la hipót	esis nula.
No hay diferenci	as en LSI entre categor	ías de EJE.		0,097*	Rechace la hipót	esis nula.
No hay diferenci	as en A_MN entre cate	gorías de EJE.		0,082*	Rechace la hipót	esis nula.
No hay diferenci	as en SH_MD entre ca	tegorías de EJE.		0,03**	Rechace la hipót	esis nula.
No hay diferenci	as en FR_MD entre car	tegorías de EJE.		0,065*	Rechace la hipót	esis nula.
No hay diferenci	as en PAFR entre categ	gorías de EJE.		0,709	Conserve la hipó	tesis nula.
No hay diferenci	as en ENN_MN entre	categorías de EJE.		0,652	Conserve la hipó	
Prueba F para mu	estras con distribución	normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SH MN	Entre grupos	0,031	1	0,031	12,309	0,001***
_	Dentro de grupos	0,112	44	0,003	ŕ	
	Total	0,143	45			
	Entre grupos	0	1	0	2,093	0,155
R MN	C 1	0,004	44	0		
FR_MN	Dentro de grupos					
FR_MN	Dentro de grupos Total	0,004	45			
FR_MN	Total	0,004 53,596	45 1	53,596	1,152	0,289
_	• .			53,596 46,524	1,152	0,289

	Suelo Natural no Bocoso					
Pruebas de noi	-malidad					
Tucbas uc noi	mandau	Kolmog	orov-S	Smirnov	Distribución	Distribución
Me	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,14	45	0,027**		X
2	NP	0,131	45	0,049**		X
3	PD	0,131	45	0,05**		X
4	LPI	0,178	45	<,001***		X
5	LSI	0,101	45	,200 ¹	X	
6	A_MN	0,35	45	<,001***		X
7	SH_MN	0,154	45	0,009***		X
8	SH_MD	0,135	45	0,04**		X
9	FR_MN	0,147	45	0,016**		X
10	FR_MD	0,088	45	,2001	X	
11	PAFR	0,418	45	<,001***		X
12	ENN_MN	0,302	45	<,001***		X
13	AI	0,081	45	,200 ¹	X	
Esto es un lín Caso pérdido	nite inferior de la significac	ión verdadera.				
Prueba de Kru	skal-Wallis para muestras i	ndependientes				
Hipótesis nula				Sig.	Decisión	
No hay difere	ncias en PLAND entre cate	gorías de EJE.		0,055*	Rechace la hipótesis nula.	
No hay difere	ncias en NP entre categoría	s de EJE.		0,18	Conserve la hipótesis nula.	
No hay difere	ncias en PD entre categoría	s de EJE.		0,176	Conserve la hipóte	sis nula.
No hay difere	ncias en LPI entre categoría	as de EJE.		0,058*	Rechace la hipótes	is nula.
No hay difere	ncias en A_MN entre categ	orías de EJE.		0,003***	Rechace la hipótes	is nula.
No hay difere	ncias en SH_MN entre cate	gorías de EJE.		0,119	Conserve la hipóte	sis nula.
No hay difere	ncias en SH_MD entre cate	gorías de EJE.		0,633	Conserve la hipóte	sis nula.
No hay difere	ncias en FR_MN entre cate	gorías de EJE.		0,867	Conserve la hipóte	sis nula.
	ncias en PAFR entre catego			0,221	Conserve la hipóte	sis nula.
•	ncias en ENN MN entre ca			0,544	Conserve la hipóte	
	muestras con distribución r				•	
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	20,775	1	20,775	1,801	0,186
	Dentro de grupos	507,556	44	11,535		
	Total	528,331	45			
R_MD	Entre grupos	0	1	0	0,013	0,909
	Dentro de grupos	0,05	44	0,001		
	Total	0,05	45			
AI	Entre grupos	26,371	1	26,371	4,322	0,043**
	Dentro de grupos	268,488	44	6,102		
	Total	294,859	45			
liveles de con	nfianza: *90%, **95%, ***			,		
Dagarta T.		ICHA DE ANALISIS ES			NCIAS	
tecorte Territo	orial: 10 kilometros	Пес	o de Su	úmero de Casos: 46		A
Suelo Bosco	oso	Cuerpo de Agu			elo Agrícola	Suelo U
22 30000				- Fuc		

	Suelo Natural no Bocoso					
Pruebas de norn	nalidad					
		Kolmos	Smirnov	Distribución		
Met	tricas del Paisaje	Estadístico	gl	Sig.	Normal	Distribución Libi
1	PLAND	0,18	46	<,001***		X
2	NP	0,152	46	0,01***		X
3	PD	0,151	46	0,01***		X
4	LPI	0,282	46	<,001***		X
5	LSI	0,104	46	$,200^{1}$	X	
6	A_MN	0,194	46	<,001***		X
7	SH_MN	0,144	46	0,018**		X
8	SH_MD	0,202	46	<,001***		X
9	FR_MN	0,088	46	$,200^{1}$	X	
10	FR_MD	0,176	46	0,001***		X
11	PAFR	0,112	46	0,191	X	
12	ENN_MN	0,331	46	<,001***		X
13	AI	0,158	46	0,006***		X
Esto es un lími	ite inferior de la significaci	ón verdadera.				
Casos pérdido	os					
rueba de Krusl	kal-Wallis para muestras in	dependientes				
lipótesis nula				Sig.	Decisión	
No hay diferen	cias en PLAND entre categ	gorías de EJE.		,006***	Rechace la hipótes	is nula.
No hay diferen	cias en NP entre categorías	de EJE.		0,401	Conserve la hipóte	sis nula.
	cias en PD entre categorías			0,401	Conserve la hipóte	sis nula.
No hay diferen	cias en LPI entre categorías	s de EJE.		0,003***	Rechace la hipótes	is nula.
No hay diferen	cias en A_MN entre catego	orías de EJE.		,005***	Rechace la hipótes	is nula.
No hay diferen	cias en SH_MN entre categ	gorías de EJE.		0,059*	Rechace la hipótes	is nula.
No hay diferen	cias en SH_MD entre categ	gorías de EJE.		0,525	Conserve la hipóte	sis nula.
No hay diferen	cias en FR_MD entre categ	gorías de EJE.		0,648	Conserve la hipóte	sis nula.
No hay diferen	cias en ENN_MN entre cat	egorías de EJE.		0,296	Conserve la hipóte	sis nula.
No hay diferen	cias en AI entre categorías	de EJE.		,027**	Rechace la hipótes	is nula.
rueba F para n	nuestras con distribución no	ormal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SI	Entre grupos	229,458	1	229,458	1,447	0,236
	Dentro de grupos	6979,16	44	158,617		
	Total	7208,618	45			
R_MD	Entre grupos	0	1	0	0,073	0,789
	Dentro de grupos	0,007	44	0		
	Total	0,007	45			
AFR	Entre grupos	0	1	0	0,011	0,919
	Dentro de grupos	0,079	44	0,002		
	- ·		45			

FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS						
Recorte Territorial: 10 kilometros Número de Casos: 46 Año:20						
Uso de Suelo						
Suelo Boscoso	Cuerpo de Agua	Suelo Agrícola	Suelo Urbano			

	Suelo Natural no Bocoso					
Pruebas de norn						
Met	ricas del Paisaje	_	orov-S	Smirnov	Distribución	Distribución Libro
	, 	Estadístico	gl	Sig.	Normal	
1	PLAND	0,248	46	<,001***		X
2	NP	0,123	46	0,081	X	
3	PD	0,123	46	0,081	X	
4	LPI	0,366	46	<,001***		X
5	LSI	0,098	46	$,200^{1}$	X	
6	A_MN	0,291	46	<,001***		X
7	SH_MN	0,083	46	$,200^{1}$	X	
8	SH_MD	0,262	46	<,001***		X
9	FR_MN	0,087	46	$,200^{1}$	X	
10	FR_MD	0,146	46	0,015**		X
11	PAFR	0,078	46	$,200^{1}$	X	
12	ENN MN	0,229	46	<,001***		X
13	AI	0,095	46	,200¹	X	
¹ Esto es un lími	ite inferior de la significac	*				
0 Casos pérdido	=					
-	kal-Wallis para muestras i	ndependientes				
	r			C: a	Decisión	
Hipótesis nula	aing an DL AND antus anto	aaniaa da EIE		Sig.		aia mula
-	cias en PLAND entre cate cias en LPI entre categoría	-		0,202	Conserve la hipóte	
•	•			0,417	Conserve la hipóte	
-	cias en A_MN entre categ cias en SH MD entre cate			0,887 0,714	Conserve la hipóte	
•	cias en FR_MD entre cate	•		0,326	Conserve la hipóte Conserve la hipóte	
-	cias en FR_MD entre cate	-		0,320	Conserve la hipóte	
	nuestras con distribución n			0,10	Conscive la impote	sis iiuia.
F		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	513630,188	1	513630,188	4,368	0,042**
INI	Dentro de grupos	5173830,182	44	117587,05	4,500	0,042
	Total	5687460,37	45	117367,03		
PD	Entre grupos	51,375	1	51,375	4,395	0.042**
	Dentro de grupos	514,377	44	11,69	4,575	0,042
	Total	565,753	45	11,09		
LSI	Entre grupos	588,827	1	588,827	6,653	0.013**
LSI	Dentro de grupos	3893,979	44		0,033	0,013
	Total	4482,806	45	00,5		
SH_MN	Entre grupos	0,004	1	0,004	3,738	0,06*
	Dentro de grupos	0,044	44		5,750	0,00
	Total	0,048	45	- 7		
FR MN	Entre grupos	0	1	0	0,657	0,422
_	Dentro de grupos	0,001	44		•	•
	Total	0,001	45			
PAFR	Entre grupos	0,004	1	0,004	1,764	0,191
	Dentro de grupos	0,09	44			
	Total	0,093	45			
				9.964	0.904	0.275
AI	Entre grupos	8,864	1	8,864	0,804	0,375

 $\boldsymbol{\text{Grupo 1.3.}}\ \text{RT1 (10 km)}$ -Análisis estadístico de diferencias entre los años 2020 y 2022

	FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS	
Recorte Territorial: 10 kilometros	Número de Casos: 92 (46 por cada año)	Año: 2020 y 2022
	Uso de Suelo	

Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		St	uelo Agrícola	Suelo Urbano
Pruebas de normalie	dad					
Matric	cas del Paisaje	Kolmogo	rov-S	Smirnov	Distribución Normal	Distribución
Metric	cas del Paisaje	Estadístico	gl	Sig.	Distribución Normai	Libre
1	PLAND	0,159	92	<,001***		X
2	NP	0,136	92	<,001***		X
3	PD	0,134	92	<,001***		X
4	LPI	0,127	92	<,001***		X
5	LSI	0,065	92	,2001	X	
6	A_MN	0,383	92	<,001***		X
7	SH_MN	0,101	92	0,021**		X
8	SH MD	0,396	92	<,001***		X
9	FR_MN	0,078	92	,2001	X	
10	FR_MD	0,16	92	<,001***		X
11	PAFR	0,329	92	<,001		X
12	ENN_MN	0,365	92	<,001***		X
13	AI	0,363	92	,2001	X	
	nferior de la significación v	•	12	,200		
0 Casos pérdidos	menor de la significación	/Cluaucia.				
	Wallis para muestras indep	pendientes				
	1 timb para mass	charence		g: -	Desirit.	
Hipótesis nula		-		Sig.	Decisión	
•	s en PLAND entre categoría			0,095*	Rechace la hipótesis nula.	
-	s en NP entre categorías de			0,016**	Rechace la hipótesis nula.	
-	s en PD entre categorías de			0,017**	Rechace la hipótesis nula.	
-	s en LPI entre categorías de			0,932	Conserve la hipótesis nula	
	s en A_MN entre categorías			0,026**	Rechace la hipótesis nula.	
•	s en SH_MN entre categoría			0,722	Conserve la hipótesis nula	
	s en SH_MD entre categoría			0,041**	Rechace la hipótesis nula.	
No hay diferencias	s en FR_MD entre categoría	as de YEAR.		0,286	Conserve la hipótesis nula	•
-	s en PAFR entre categorías			<,001***	Rechace la hipótesis nula.	
	s en ENN_MN entre catego			<,001***	Rechace la hipótesis nula.	
Prueba F para mues	stras con distribución norm	al				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	495,602	1	495,602	11,591	<,001***
	Dentro de grupos	3848,098	90	42,757		
	Total	4343,699	91			
FR_MN	Entre grupos	0	1	0	0,281	0,598
	Dentro de grupos	0,007	90	0		
A T	Total	0,007	91	7.064	7.905	0.00/***
AI	Entre grupos Dentro de grupos	7,064 80,523	1 90	7,064 0,895	7,895	0,006***
	Total	87,587	91	0,093		
Niveles de confianz	za: *90%, **95%, ***99%	01,501				
			- 74			
		A DE ANALISIS ESTA				
Recorte Territorial:	10 kilometros	Número de Casos:	92 (4	46 por cada año)		Año: 2020 y 2022
		Uso de	e Sue	elo		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		Suel	o Agrícola	Suelo Urbano

		Kolmos	porov-S	Smirnov	Distribución	
Me	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Distribución Libro
1	PLAND	0,139	92	<,001***		X
2	NP	0,206	92	<,001***		X
3	PD	0,206	92	<,001***		X
4	LPI	0,331	92	<,001***		X
5	LSI	0,138	92	<,001***		X
6	A_MN	0,235	92	<,001***		X
7	SH_MN	0,106	92	0,013**		X
8	SH_MD	0,156	92	<,001***		X
9	FR_MN	0,093	92	0,05**		X
10	FR_MD	0,095	92	0,039**		X
11	PAFR	0,183	92	<,001***		X
12	ENN_MN	0,198	92	<,001***		X
13	AI	0,082	92	0,161	X	
Esto es un lí	mite inferior de la significa	ación verdadera.				
Casos pérdi	dos					
Prueba de Kr	uskal-Wallis para muestras	independientes				
Hipótesis nul	a			Sig.	Decisión	
No hay difer	encias en PLAND entre ca	tegorías de YEAR.		0,963	Conserve la hipó	tesis nula.
No hay difer	encias en NP entre categor	ías de YEAR.		0,824	Conserve la hipó	tesis nula.
No hay difer	encias en PD entre categor	ías de YEAR.		0,821	Conserve la hipó	tesis nula.
No hay difer	encias en LPI entre catego:	rías de YEAR.		0,532	Conserve la hipó	tesis nula.
No hay difer	encias en LSI entre catego:	rías de YEAR.		0,2	Conserve la hipó	tesis nula.
No hay difer	encias en A_MN entre cate	egorías de YEAR.		0,617	Conserve la hipó	tesis nula.
No hay difer	encias en SH_MN entre ca	tegorías de YEAR.		<,001***	Rechace la hipót	esis nula.
No hay difer	encias en SH_MD entre ca	tegorías de YEAR.		<,001***	Rechace la hipót	esis nula.
No hay difer	encias en FR_MD entre ca	tegorías de YEAR.		<,001***	Rechace la hipót	esis nula.
No hay difer	encias en PAFR entre cate	gorías de YEAR.		<,001***	Rechace la hipót	esis nula.
No hay difer	encias en ENN_MN entre	categorías de YEAR.		0,894	Conserve la hipó	tesis nula.
Prueba F para	muestras con distribución					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
FR_MN	Entre grupos	0,006	1	0,006	41,447	<,001***
	Dentro de grupos	0,012	90	0		
	Total	0,018	91			
ΑI	Entre grupos	186,57	1	186,57	3,377	0,069*
	Dentro de grupos	4972,219	90	55,247		
	Total	5158,789	91			

FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS								
Recorte Territorial: 10 kilometros Número de Casos: 92 (46 por cada año) Año: 202								
		Uso de Suelo)					
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	Suelo Agrícola	Suelo Urbano				

Pruebas de nori	Illalidad	77.1		•		
Me	etricas del Paisaje	Kolmog Estadístico			Distribución Normal	Distribución Lib
1	DI AND		gl	Sig.		X
1	PLAND	0,149	91	<,001***		X
2	NP	0,146	91	<,001***		X
3	PD	0,147	91	<,001***		X
4	LPI	0,179	91	<,001***		
5	LSI	0,104	91	0,016**		X
6	A_MN	0,298	91	<,001***		X
7	SH_MN	0,178	91	<,001***		X
8	SH_MD	0,194	91	<,001***		X
9	FR_MN	0,104	91	0,016**		X
10	FR_MD	0,091	91	0,059	X	
11	PAFR	0,404	91	<,001***		X
12	ENN_MN	0,265	91	<,001***		X
13	AI	0,117	91	0,004***		X
l Caso pérdido Prueba de Krus	ite inferior de la significaci					
l Caso pérdido						
l Caso pérdido Prueba de Krus Hipótesis nula	kal-Wallis para muestras ir	ndependientes		Sig.	Decisión	
l Caso pérdido Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras ir	ndependientes gorías de YEAR.		0,13	Conserve la hipót	
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras ir icias en PLAND entre categorías icias en NP entre categorías	ndependientes gorías de YEAR. s de YEAR.		0,13 0,093*	Conserve la hipóte Rechace la hipóte	esis nula.
Prueba de Krus Hipótesis nula No hay diferen No hay diferen No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías acias en PD entre categorías	ndependientes gorías de YEAR. s de YEAR.		0,13 0,093* 0,098*	Conserve la hipóte Rechace la hipóte Rechace la hipóte	esis nula. esis nula.
Prueba de Krus Hipótesis nula No hay diferen No hay diferen No hay diferen No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías acias en NP entre categorías acias en PD entre categorías acias en LPI entre categoría	gorías de YEAR. s de YEAR. s de YEAR. s de YEAR.		0,13 0,093* 0,098* 0,057*	Conserve la hipót Rechace la hipóte Rechace la hipóte Rechace la hipóte	esis nula. esis nula. esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras ir acias en PLAND entre categorías acias en NP entre categorías acias en LPI entre categoría acias en LSI entre categoría	gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. s de YEAR.		0,13 0,093* 0,098* 0,057* 0,271	Conserve la hipót Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót	esis nula. esis nula. esis nula. esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en PD entre categorías acias en PD entre categorías acias en LPI entre categoría acias en LSI entre categoría acias en A_MN entre categoría	gorías de YEAR. s de YEAR.		0,13 0,093* 0,098* 0,057*	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Rechace la hipóte	esis nula. esis nula. esis nula. esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en PD entre categorías ecias en LPI entre categorías ecias en LSI entre categoría ecias en A_MN entre categoria ecias en SH_MN entre categorias en SH_MN entre categor	gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. orías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Rechace la hipóte Conserve la hipóte	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en PD entre categorías acias en PD entre categorías acias en LPI entre categoría acias en LSI entre categoría acias en A_MN entre categoría	gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. orías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028**	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Rechace la hipóte	esis nula. esis nula. esis nula. esis nula. esis nula. esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en NP entre categorías en LPI entre categoría acias en LSI entre categoría acias en LSI entre categoría acias en SH_MN entre categoría acias en SH_MN entre categoría acias en SH_MN entre categorías en SH_MD entre categorías en SH_MD entre categorías en SH_MD entre categorías en SH_MD entre categorías en SH_MN entre categorías en FR_MN entre categ	ndependientes gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipót Conserve la hipót	esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en PD entre categorías en LPI entre categorías en LSI entre categoría acias en LSI entre categoría acias en SH_MN entre categorías en SH_MD	ndependientes gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipót	esis nula.
Prueba de Krus Hipótesis nula No hay diferer	kal-Wallis para muestras in acias en PLAND entre categorías en NP entre categorías en LPI entre categoría acias en LSI entre categoría acias en LSI entre categoría acias en SH_MN entre categoría acias en SH_MN entre categoría acias en SH_MN entre categorías en SH_MD entre categorías en SH_MD entre categorías en SH_MD entre categorías en SH_MD entre categorías en SH_MN entre categorías en FR_MN entre categ	gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498 0,885	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipót Conserve la hipót	esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en RP entre categorías en EPI entre categorías en LSI entre categoría acias en LSI entre categoría acias en A_MN entre categoría en SH_MN entre categoría en SH_MD entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en PAFR entre categoría entre categoría en PAFR entre categoría en	ndependientes gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. tegorías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498 0,885 0,761	Conserve la hipót Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipót Rechace la hipóte Conserve la hipót Conserve la hipót Conserve la hipót	esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en PD entre categorías acias en LPI entre categorías acias en LSI entre categorías en A_MN entre categorías en SH_MN entre categorías en SH_MD entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en PAFR entre categorías en PAFR entre categorías en ENN_MN entre categorí	ndependientes gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. tegorías de YEAR. tegorías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498 0,885 0,761 0,062*	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipót Conserve la hipót Conserve la hipót Conserve la hipót Rechace la hipót	esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en NP entre categorías en LPI entre categorías en LSI entre categoría acias en LSI entre categoría acias en SH_MN entre categoría acias en SH_MD entre categorías en SH_MD entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en PAFR entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en AI entre categorías	ndependientes gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. tegorías de YEAR. tegorías de YEAR.	gl	0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498 0,885 0,761 0,062*	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipót Conserve la hipót Conserve la hipót Conserve la hipót Rechace la hipót	esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in cias en PLAND entre categorías en NP entre categorías en ENI entre categorías en LSI entre categorías en SH_MN entre categorías en SH_MD entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en PAFR entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en AI entre categorías en AI entre categorías en AI entre categorías en AI entre categorías en ENI	gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. tegorías de YEAR.	gl	0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498 0,885 0,761 0,062* 0,048**	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipót Rechace la hipóte Rechace la hipóte	esis nula.
Prueba de Krus Hipótesis nula No hay diferen	kal-Wallis para muestras in acias en PLAND entre categorías en NP entre categorías en LPI entre categorías en LSI entre categoría acias en LSI entre categoría acias en SH_MN entre categoría acias en SH_MD entre categorías en SH_MD entre categorías en FR_MN entre categorías en FR_MN entre categorías en FR_MN entre categorías en PAFR entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en ENN_MN entre categorías en AI entre categorías	ndependientes gorías de YEAR. s de YEAR. s de YEAR. s de YEAR. orías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. gorías de YEAR. tegorías de YEAR.		0,13 0,093* 0,098* 0,057* 0,271 0,028** 0,725 0,498 0,885 0,761 0,062* 0,048**	Conserve la hipóte Rechace la hipóte Rechace la hipóte Rechace la hipóte Conserve la hipóte Conserve la hipóte Conserve la hipót Conserve la hipót Conserve la hipót Conserve la hipót Rechace la hipóte Rechace la hipóte	esis nula.

Pruebas de normalidad		Año: 2020 y 202
Pruebas de normalidad Metricas del Paisaje Estadístico gl Sig.		
Netricas del Paisaje	grícola	Suelo Urbano
Netricas del Paisaje		
2 NP 0.08 92 0,194 3 PD 0,08 92 0,193 4 LPI 0,266 92 <,001*** 5 LSI 0.071 92 2,200¹ 6 A_MN 0,283 92 <,001*** 7 SH_MN 0,112 92 0,006*** 8 SH_MD 0,211 92 <,001*** 9 FR_MN 0,073 92 2,00¹ 10 FR_MD 0,176 92 <,001*** 11 PAFR 0,073 92 2,00¹ 12 ENN_MN 0,324 92 <,001*** 13 AI 0,128 92 <,001*** 13 AI 0,128 92 <,001*** Esto es un limite inferior de la significación verdadera. 10 Casos pérdidos Prueba de Kruskal-Wallis para muestras independientes Hipótesis nula No hay diferencias en PLAND entre categorías de YEAR. No hay diferencias en SH_MN entre categorías de YEAR. No hay diferencias en SH_MN entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR_MO entre categorías de YEAR. No hay diferencias en FR	Distribución Normal	Distribución Lib
3		X
4 LPI 0,2666 92 <,001*** 5 LSI 0,071 92 .200¹ 6 A_MN 0,283 92 <,001*** 7 SH_MN 0,112 92 0,006*** 8 SH_MD 0,211 92 <,001*** 9 FR_MN 0,073 92 .200¹ 10 FR_MD 0,176 92 <,001*** 11 PAFR 0,073 92 .200¹ 11 PAFR 0,073 92 .200¹ 12 ENN_MN 0,324 92 <,001*** 13 AI 0,128 92 <,001*** 15 Esto es un límite inferior de la significación verdadera. 16 Casos pérdidos 17 Ocasos pérdidos 18 Prueba de Kruskal-Wallis para muestras independientes 19 Ocasos pérdidos 10 Ocasos pérdidos 10 Ocasos pérdidos 11 Ocasos pérdidos 11 Ocasos pérdidos 12 ENN_MN 0,324 92 <,001*** 13 Ocasos pérdidos 14 Ocasos pérdidos 15 Ocasos pérdidos 16 Ocasos pérdidos 17 Ocasos pérdidos 18 Ocasos pérdidos 19 Ocasos pérdidos 19 Ocasos pérdidos 19 Ocasos pérdidos 19 Ocasos pérdidos 10 Ocasos pérdi	X	
5 LSI 0,071 92 200¹ 6 A_MN 0,283 92 <,001*** 7 SH_MN 0,112 92 0,006*** 8 SH_MD 0,211 92 <,001*** 9 FR_MN 0,073 92 <,001*** 10 FR_MD 0,176 92 <,001*** 11 PAFR 0,073 92 ,200¹ 12 ENN_MN 0,324 92 <,001*** 13 AI 0,128 92 <,001*** Esto es un limite inferior de la significación verdadera. 10 Casos pérdidos Prueba de Kruskal-Wallis para muestras independientes Hipótesis nula Sig. No hay diferencias en PLAND entre categorías de YEAR. 0,007*** No hay diferencias en LPI entre categorías de YEAR. 0,007*** No hay diferencias en SH_MN entre categorías de YEAR. 0,0031** No hay diferencias en SH_MD entre categorías de YEAR. 0,0031** No hay diferencias en SH_MD entre categorías de YEAR. 0,003** No hay diferencias en ENP mentre categorías de YEAR. 0,003** No hay diferencias en SH_MD entre categorías de YEAR. 0,003** No hay diferencias en ENP mentre categorías de YEAR. 0,003** No hay diferencias en ENP mentre categorías de YEAR. 0,002** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,031** No hay diferencias en ENP mentre categorías de YEAR. 0,022** No hay diferencias en ENP mentre categorías de YEAR. 0,031** No hay diferencias en ENP mentre categorías de YEAR. 0,031** No hay diferencias en ENP mentre categorías de YEAR. 0,0003*** No hay diferencias en ENP mentre categorías de YEAR. 0,0003*** No hay difer	X	
6 A_MN 0,283 92 <,001*** 7 SH_MN 0,112 92 0,006*** 8 SH_MD 0,211 92 <,001*** 9 FR_MN 0,073 92 ,200¹ 10 FR_MD 0,176 92 <,001*** 11 PAFR 0,073 92 ,200¹ 12 ENN_MN 0,324 92 <,001*** 13 AI 0,128 92 <,001*** 15 AI 0,128 92 <,001*** Esto es un limite inferior de la significación verdadera. 10 Casos pérdidos Prueba de Kruskal-Wallis para muestras independientes 11 Sig. No hay diferencias en PLAND entre categorías de YEAR. 0,001*** No hay diferencias en LPI entre categorías de YEAR. 0,001*** No hay diferencias en SH_MN entre categorías de YEAR. 0,031** No hay diferencias en SH_MD entre categorías de YEAR. 0,003** No hay diferencias en FR_MD entre categorías de YEAR. 0,003** No hay diferencias en FR_MD entre categorías de YEAR. 0,003** No hay diferencias en FR_MD entre categorías de YEAR. 0,003** No hay diferencias en ENL_MN entre categorías de YEAR. 0,025** No hay diferencias en ENL_MN entre categorías de YEAR. 0,025** No hay diferencias en ENL_MN entre categorías de YEAR. 0,299 Pueba F para muestras con distribución normal Suma de cuadrados gl Media cuadrática NP Entre grupos 2281545,043 1 2281545,043 Dentro de grupos 33549212,17 90 372769,024 Total 35830757,22 91 Pontro de grupos 33549212,17 90 37042 Total 3580,304 91 SSI Entre grupos 1930,853 1 1930,853 Dentro de grupos 1930,853 1 1930,853 Dentro de grupos 19434,228 90 138,158 Total 14365,081 91 FR_MN Entre grupos 0 0 1 0 Dentro de grupos 0,004 90 0		X
7 SH_MN 0,112 92 0,006*** 8 SH_MD 0,211 92 <,001*** 9 FR_MN 0,073 92 ,200¹ 10 FR_MD 0,176 92 <,001*** 11 PAFR 0,073 92 ,200¹ 12 ENN_MN 0,324 92 <,001*** 13 AI 0,128 92 <,001*** Esto es un limite inferior de la significación verdadera. **Casos pérdidos** **Prueba de Kruskal-Wallis para muestras independientes** Hipótesis nula Sig. No hay diferencias en PLAND entre categorías de YEAR. No hay diferencias en A_MN entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. No hay diferencias en END_MD entre categorías de YEAR. No hay diferencias en END_MD entre categorías de YEAR. No hay diferencias en END_MD entre categorías de YEAR. No hay diferencias en END_MD entre categorías de YEAR. Prueba F para muestras con distribución normal Suma de cuadrados B' Media cuadrática NP Entre grupos 2281545,043 Dentro de grupos 33549212,17 90 372769,024 Total 35830757,22 91 Media cuadrática NP Entre grupos 226,483 1 226,483 Dentro de grupos 3333,821 90 37,042 Total 3580,034 91 Entre grupos 1930,853 1 1930,853 Dentro de grupos 19434,228 90 138,158 Total 14365,081 91 Para MER Entre grupos 0 0 1 0 Dentro de grupos 0,004 90 0	X	
8 SH_MD 0,211 92 <,001*** 9 FR_MN 0,073 92 ,200¹ 10 FR_MD 0,176 92 <,001*** 11 PAFR 0,073 92 ,200¹ 12 ENN_MN 0,324 92 <,001*** 13 AI 0,128 92 <,001*** 13 AI 0,128 92 <,001*** Esto es un límite inferior de la significación verdadera. **Casos pérdidos** **Trueba de Kruskal-Wallis para muestras independientes* **Injótesis nula Sig.** No hay diferencias en PLAND entre categorías de YEAR. 0,007*** No hay diferencias en LPI entre categorías de YEAR. 0,007*** No hay diferencias en SH_MN entre categorías de YEAR. 0,031** No hay diferencias en SH_MD entre categorías de YEAR. 0,031** No hay diferencias en SH_MD entre categorías de YEAR. 0,062** No hay diferencias en FR_MD entre categorías de YEAR. 0,062** No hay diferencias en SH_MD entre categorías de YEAR. 0,062** No hay diferencias en FR_MD entre categorías de YEAR. 0,025** No hay diferencias en FR_MD entre categorías de YEAR. 0,025** No hay diferencias en AI entre categorías de YEAR. 0,299 **Trueba F para muestras con distribución normal** **Suma de cuadrados** Suma de cuadrados** AP Entre grupos 2281545,043 1 2281545,043 Dentro de grupos 33549212,17 90 372769,024 Total 35830757,22 91 **Dentro de grupos 3333,821 90 37,042 Total 3560,304 91 **SI Entre grupos 1930,853 1 1930,853 Dentro de grupos 0 1 0 Dentro de grupos 0,004 90 0		X
9 FR_MN 0,073 92 ,200¹ 10 FR_MD 0,176 92		X
10		X
11	X	
12		X
13	X	••
Esto es un límite inferior de la significación verdadera. O Casos pérdidos Prueba de Kruskal-Wallis para muestras independientes Hipótesis nula No hay diferencias en PLAND entre categorías de YEAR. No hay diferencias en LPI entre categorías de YEAR. No hay diferencias en A_MN entre categorías de YEAR. No hay diferencias en SH_MN entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. O ,0025** No hay diferencias en AI entre categorías de YEAR. O ,0299 Prueba F para muestras con distribución normal Pueba F pa		X
Casos pérdidos Prueba de Kruskal-Wallis para muestras independientes		X
Sig. Sig.		
Sig.		
No hay diferencias en PLAND entre categorías de YEAR. 0,001***	D : :/	
No hay diferencias en LPI entre categorías de YEAR. 0,007***	Decisión	
No hay diferencias en A_MN entre categorías de YEAR. 0,031**	Rechace la hipótes	
No hay diferencias en SH_MN entre categorías de YEAR. 0,003***	Rechace la hipótes	
No hay diferencias en SH_MD entre categorías de YEAR. No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. Suma de cuadrados gl Media cuadrática NP Entre grupos 33549212,17 90 372769,024 Total 35830757,22 91 PD Entre grupos 226,483 1 226,483 Dentro de grupos 3333,821 90 37,042 Total 3560,304 91 SI Entre grupos 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 PAFR Entre grupos 0 0 1 0 0 0 0 0 0 0 0 0 0	Rechace la hipótes Rechace la hipótes	
No hay diferencias en FR_MD entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en AI entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. No hay diferencias en ENN_MN entre categorías de YEAR. Suma de cuadrados gl Media cuadrática NP Entre grupos 33549212,17 90 372769,024 Total 35830757,22 91 PD Entre grupos 226,483 1 226,483 Dentro de grupos 3333,821 90 37,042 Total 3560,304 91 LSI Entre grupos 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 PAFR Entre grupos 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0	Conserve la hipóte	
No hay diferencias en ENN_MN entre categorías de YEAR. 0,025** No hay diferencias en AI entre categorías de YEAR. 0,299	Conserve la hipóte	
No hay diferencias en AI entre categorías de YEAR. 0,299	Rechace la hipótes	
Suma de cuadrados gl Media cuadrática	Conserve la hipóte	
Entre grupos 2281545,043 1 2281545,043 Dentro de grupos 33549212,17 90 372769,024 Total 35830757,22 91 PD		
Entre grupos 2281545,043 1 2281545,043 Dentro de grupos 33549212,17 90 372769,024 Total 35830757,22 91 PD	F	Sig.
Total 35830757,22 91 Entre grupos 226,483 1 226,483 Dentro de grupos 3333,821 90 37,042 Total 3560,304 91 LSI Entre grupos 1930,853 1 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0	6,121	0,015**
PD Entre grupos 226,483 1 226,483 Dentro de grupos 3333,821 90 37,042 Total 3560,304 91 LSI Entre grupos 1930,853 1 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0	,	,
Dentro de grupos 3333,821 90 37,042 Total 3560,304 91 SI Entre grupos 1930,853 1 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0		
Total 3560,304 91 SSI Entre grupos 1930,853 1 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 SR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0	6,114	0,015**
Total 3560,304 91 SI Entre grupos 1930,853 1 1930,853 Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0		
Dentro de grupos 12434,228 90 138,158 Total 14365,081 91 FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0		
Total 14365,081 91 FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0	13,976	<,001***
FR_MN Entre grupos 0 1 0 Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0		
Dentro de grupos 0,004 90 0 Total 0,004 91 PAFR Entre grupos 0 1 0		
Total 0,004 91 PAFR Entre grupos 0 1 0	0,923	0,339
AFR Entre grupos 0 1 0		
D 4 1 0115 00 0001	0,017	0,896
Dentro de grupos 0,115 90 0,001		
Total 0,115 91		
Niveles de confianza: *90%, **95%, ***99%		

Recorte Territoria	I: 10 Kilometros	Número de Caso				Año: 2020 y 202
		Uso	de Sue	lo		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	ı	Suelo	Agrícola	Suelo Urbano
Pruebas de norma	lidad					
Metric	as del Paisaje	Kolmog	orov-S	Smirnov	Distribución	Distribución Libr
Wictite	as dei i aisaje	Estadístico	gl	Sig.	Normal	Distribución Lior
1	PLAND	0,264	92	<,001***		X
2	NP	0,067	92	,2001	X	
3	PD	0,067	92	,2001	X	V
4 5	LPI LSI	0,389	92 92	<,001*** ,200¹	X	X
6	A_MN	0,064 0,276	92	,200 <,001***	Λ	X
7	SH_MN	0,075	92	,200¹	X	Λ
8	SH_MD	0,214	92	<.001***	Λ	X
9	FR_MN	0,053	92	,2001	X	Λ
10	FR_MD	0,163	92	<.001***		X
11	PAFR	0,066	92	,2001	X	
12	ENN_MN	0,216	92	<,001***		X
13	AI	0,055	92	,200¹	X	
¹ Esto es un límite	inferior de la significaci	ón verdadera.		·		0 Casos pérdidos
	l-Wallis para muestras ir					o cases peranaes
Hipótesis nula	1	1		Sig.	Decisión	
*	as en PLAND entre cates	rorios de VEAP		<.001***	Rechace la hipótes	ie mula
-	as en LPI entre categoría			<.001***	Rechace la hipótes	
-	as en A MN entre categoria			<,001***	Rechace la hipótes	
•	as en SH_MD entre cate			0,102	Conserve la hipóte	
	as en FR_MD entre cates			0,817	Conserve la hipóte	
-	as en ENN_MN entre ca			0,574	Conserve la hipóte	
	estras con distribución n					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	67176,043	1	67176,043	0,676	0,413
	Dentro de grupos	8947585,696	90	99417,619	,	,
	Total	9014761,739	91	,		
PD	Entre grupos	6,608	1	6,608	0,668	0,416
_	Dentro de grupos	889,699		9,886	-,	-,
	Total	896,307	91			
LSI	Entre grupos	140,336	1	140,336	1,989	0,162
201	Dentro de grupos	6350,017	90	70,556	1,707	0,102
	Total	6490,352	91	70,550		
SH MN	Entre grupos	0,004	1	0,004	3,839	0,053*
311_IVIIN	Dentro de grupos	0,084	90	0,004	3,639	0,033
	C 1			0,001		
FR MN	Total Entre grupos	0,087 0	91 1	0	3,148	0,079*
I IV_IATIA	Dentro de grupos		90		3,170	0,079
	е т	0,002		U		
DAED	Total	0,002	91	0.01	5 902	0.010**
PAFR	Entre grupos	0,01	1	0,01	5,802	0,018**
	Dentro de grupos	0,154	90	0,002		
A.T.	Total	0,164	91	522 600	42.400	. 001 444
AI	Entre grupos	533,699	1	533,699	42,489	<,001***
	Dentro de grupos Total	1130,483	90 91	12,561		
		1664,181				

Grupo 1.4. RT1 (10 km) - Análisis estadístico de diferencias entre 2020 y 2022 en el eje fluvial 1: Afluentes del río Napo.

Accord Territorial.	0 kilometros	DE ANALISIS ESTADI Número de Casos				Año:2020 Y 20
	0 Kiloilieuos	Uso de Su		i i poi cada alio)		Alio.2020 1 20
		Oso de su	CIO			
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		Suelo A	Agrícola	Suelo Urbano
ruebas de normalida	ad					
Metrica	as del Paisaje	Kolmogo	rov-S		Distribución	Distribución Li
		Estadístico	gl	Sig.	Normal	
1	PLAND	0,221	22	0,006***		X
2	NP	0,218	22	0,008***		X
3	PD	0,217	22	0,008***		X
4	LPI	0,227	22	0,005***	37	X
5	LSI	0,112	22	,2001	X	
6	A_MN	0,128	22	,200¹	X	
7	SH_MN	0,157	22	0,166	X	X
8	SH_MD	0,467	22	<,001***	X	Λ
9	FR_MN	0,134	22	,2001	Λ	X
10	FR_MD	0,256	22	<,001***	X	Λ
11	PAFR	0,164	22	0,126	X	
12 13	ENN_MN	0,154	22	0,192	X	
	AI ferior de la significación vo	0,156 erdadera	22	0,173	Α	0 Casos pérdido
	Vallis para muestras indepe					o cases peraia.
ipótesis nula	ams para maestras maepe	narences		Sig.	Decisión	
•	n PLAND entre categoría	s de YEAR.		0,178	Conserve la hip	ótesis nula
•	n NP entre categorías de Y			0,375	Conserve la hip	
	en PD entre categorías de Y			0,375	Conserve la hip	
-	n LPI entre categorías de			0,02**	Rechace la hipó	
-	n SH_MD entre categoría			0,561	Conserve la hip	
	n FR_MD entre categoría:			0,12	Conserve la hip	
	ras con distribución norma					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SI	Entre grupos	5,612	1	5,612	0,142	0,71
	Dentro de grupos	700 730		20.426		
	Denino de grupos	788,728	20	39,436		
Total	• 1	788,728 794,34	20 21	39,436		
MN	• 1	· ·		480,872	1,716	0,205
_MN	Total	794,34	21		1,716	0,205
_MN	Total Entre grupos	794,34 480,872	21	480,872	1,716	0,205
	Total Entre grupos Dentro de grupos Total	794,34 480,872 5605,585	21 1 20	480,872	1,716 0,168	0,205
	Total Entre grupos Dentro de grupos	794,34 480,872 5605,585 6086,457	21 1 20 21	480,872 280,279	, 	
	Total Entre grupos Dentro de grupos Total Entre grupos	794,34 480,872 5605,585 6086,457	21 1 20 21	480,872 280,279	, 	
H_MN	Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total	794,34 480,872 5605,585 6086,457 0 0,042	21 1 20 21 1 20	480,872 280,279	, 	
H_MN	Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043	21 1 20 21 1 20 21	480,872 280,279 0 0,002	0,168	0,687
H_MN	Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0	21 1 20 21 1 20 21 1	480,872 280,279 0 0,002	0,168	0,687
A_MN H_MN R_MN	Total Entre grupos Dentro de grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001	21 1 20 21 1 20 21 1 20	480,872 280,279 0 0,002	0,168	0,687
H_MN R_MN	Total Entre grupos Dentro de grupos Total	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001	21 1 20 21 1 20 21 1 20 21	480,872 280,279 0 0,002	0,168	0,687
H_MN R_MN	Total Entre grupos Dentro de grupos Total Entre grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001	21 1 20 21 1 20 21 1 20 21	480,872 280,279 0 0,002 0 0	0,168	0,687
H_MN R_MN AFR	Total Entre grupos Dentro de grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,011	21 1 20 21 1 20 21 1 20 21 1 20 21	480,872 280,279 0 0,002 0 0	0,168	0,687
H_MN R_MN AFR	Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,011 0,012	21 1 20 21 1 20 21 1 20 21 1 20 21 21	480,872 280,279 0 0,002 0 0 0,001 0,001	0,168 1,278 1,226	0,687 0,272 0,281
H_MN R_MN AFR	Total Entre grupos Dentro de grupos Total Entre grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,011 0,012 373,303	21 1 20 21 1 20 21 1 20 21 1 20 21	480,872 280,279 0 0,002 0 0 0 0,001 0,001 373,303	0,168 1,278 1,226	0,687 0,272 0,281
H_MN R_MN AFR NN_MN	Total Entre grupos Dentro de grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,012 373,303 191,773	21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 21 20 21 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	480,872 280,279 0 0,002 0 0 0 0,001 0,001 373,303	0,168 1,278 1,226	0,687 0,272 0,281
H_MN R_MN AFR NN_MN	Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,012 373,303 191,773 565,076	21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 21 20 21 21 20 21 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	480,872 280,279 0 0,002 0 0 0 0,001 0,001 373,303 9,589	0,168 1,278 1,226 38,932	0,687 0,272 0,281 <,001***
H_MN R_MN AFR NN_MN	Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,011 0,012 373,303 191,773 565,076 0,118	21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 21 21 21 21 21 21 21 21 21 21 21 21	480,872 280,279 0 0,002 0 0 0 0,001 0,001 373,303 9,589 0,118	0,168 1,278 1,226 38,932	0,687 0,272 0,281 <,001***
H_MN R_MN AFR NN_MN	Total Entre grupos Dentro de grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,012 373,303 191,773 565,076 0,118 20,431	21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 21 20 21 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	480,872 280,279 0 0,002 0 0 0 0,001 0,001 373,303 9,589 0,118	0,168 1,278 1,226 38,932	0,687 0,272 0,281 <,001***
H_MN R_MN AFR NN_MN	Total Entre grupos Dentro de grupos Total **90%, **95%, ***99%	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,012 373,303 191,773 565,076 0,118 20,431 20,55	21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 21 20 21 21 20 21 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	480,872 280,279 0 0,002 0 0 0,001 0,001 373,303 9,589 0,118 1,022	0,168 1,278 1,226 38,932 0,116	0,687 0,272 0,281 <,001***
H_MN R_MN AFR ENN_MN	Total Entre grupos Dentro de grupos Total **90%, **95%, ***99%	794,34 480,872 5605,585 6086,457 0 0,042 0,043 0 0,001 0,001 0,001 0,012 373,303 191,773 565,076 0,118 20,431	21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 1 20 21 21 20 21 21 20 21 21 20 21 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21	480,872 280,279 0 0,002 0 0 0,001 0,001 373,303 9,589 0,118 1,022	0,168 1,278 1,226 38,932 0,116	0,687 0,272 0,281 <,001***

Pruebas de norma Metric 1 2 3 4 5 6 7 8 9 10	lidad as del Paisaje PLAND NP PD LPI LSI	Estadístico 0,146	gorov-S	Smirnov	Distribución	
1 2 3 4 5 6 7 8	PLAND NP PD LPI	Estadístico 0,146	0	Smirnov	Dietribución	
1 2 3 4 5 6 7 8	PLAND NP PD LPI	0,146	σl			Distribución Libr
2 3 4 5 6 7 8 9	NP PD LPI	· ·		Sig.	Normal	
3 4 5 6 7 8	PD LPI		22	,2001	X	37
4 5 6 7 8 9	LPI	0,265	22	<,001***		X
5 6 7 8 9		0,265	22	<,001***		X
6 7 8 9		0,217	22	0,009 $,200^{1}$	v	X
7 8 9	A MN	0,124 0,214	22 22	0,01***	X	X
8	SH MN	0,214	22	0,071	X	Λ
9	SH_MD	0,177	22	0,07	X	
	FR MN	0,228	22	0,004***	A	X
	FR MD	0,161	22	0,142	X	Λ
11	PAFR	0,123	22	,2001	X	
12	ENN MN	0,162	22	0,136	X	
13	AI	0,124	22	,200¹	X	
Esto es un límite	inferior de la significac			,		
Casos pérdidos						
ueba de Kruska	l-Wallis para muestras i	ndependientes				
ipótesis nula				Sig.	Decisión	
lo hay diferencia	as en NP entre categoría	s de YEAR.		0,178	Conserve la hipó	otesis nula.
No hay diferencia	as en PD entre categoría	s de YEAR.		0,178	Conserve la hipó	otesis nula.
	as en LPI entre categoría			0,002***	Rechace la hipót	
	as en A_MN entre categ			0,49	Conserve la hipó	
No hay diferencia	as en FR_MN entre cate	gorías de YEAR.		0,002***	Rechace la hipót	esis nula.
rueba F para mu	estras con distribución n	ormal				
•		Suma de cuadrados	gl	Media cuadrátio	ca F	Sig.
LAND	Entre grupos	5,071	1	5,071	9,786	0,005***
	Dentro de grupos	10,363	20	0,518		
	Total	15,434	21			
SI	Entre grupos	0,053	1	0,053	0,001	0,976
	Dentro de grupos	1186,33	20	59,317		
	Total	1186,383	21			
H_MN	Entre grupos	0,151	1	0,151	19,572	<,001***
	Dentro de grupos	0,154	20	0,008		
	Total	0,305	21			
H_MD	Entre grupos	0,034	1	0,034	11,584	0,003***
	Dentro de grupos	0,059	20	0,003		
	Total	0,093	21			
R_MD	Entre grupos	0,002	1	0,002	15,005	<,001***
	Dentro de grupos	0,002	20	0		
	Total	0,004	21			
AFR	Entre grupos	0,051	1	0,051	16,05	<,001***
	Dentro de grupos	0,064	20	0,003		
	Total	0,115	21			
NN_MN	Entre grupos	3418,713	1	3418,713	0,45	0,51
	Dentro de grupos	151816,412	20	7590,821		
	Total	155235,125	21			
I	Entre grupos	152,099	1	152,099	6,846	0,017**
	Dentro de grupos	444,33	20	22,216		
	Total	596,429	21			
iveles de confiar	nza: *90%, **95%, ***9	99%				

	FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS								
Recorte Territorial: 10 kilometros Número de Casos: 22 (11 por cada año) Año:2020 Y 2022									
	Uso de Suelo								
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	Suelo Agrícola	Suelo Urbano					

Pruebas de nor	malidad					
		Kolmog	orov-S	mirnov	Distribución	D' 4 '1 ' ' T '1
IV.	letricas del Paisaje	Estadístico	gl	Sig.	Normal	Distribución Libr
1	PLAND	0,156	22	0,173	X	
2	NP	0,227	22	0,005***		X
3	PD	0,227	22	0,005***		X
4	LPI	0,197	22	0,026**		X
5	LSI	0,2	22	0,023**		X
6	A_MN	0,142	22	,200 ¹	X	
7	SH_MN	0,232	22	0,003***		X
8	SH_MD	0,137	22	,200 ¹	X	
9	FR_MN	0,145	22	,200 ¹	X	
10	FR_MD	0,214	22	0,01***		X
11	PAFR	0,153	22	0,194	X	
12	ENN_MN	0,239	22	0,002***		X
13	AI	0,169	22	0,104	X	
Esto es un lím	ite inferior de la significación	n verdadera.				
O Casos pérdid	os					
Prueba de Krus	kal-Wallis para muestras ind	ependientes				
Hipótesis nula				Sig.	Decisión	
No hay diferer	ncias en NP entre categorías o	le YEAR.		0,292	Conserve la hipótesis nula.	
-	ncias en PD entre categorías o			0,308	Conserve la hipótesis nula.	
-	ncias en LPI entre categorías			0.005***	Rechace la hipótesis nula.	
-	ncias en LSI entre categorías			0,224	Conserve la hipótesis nula.	
-	ncias en SH MN entre catego			0,87	Conserve la hipóte	
	ncias en FR_MD entre catego			0,895	Conserve la hipótesis nula.	
	ncias en ENN_MN entre cate			0,87	Conserve la hipótes	
Prueba F para 1	nuestras con distribución nor	mal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
PLAND	Entre grupos	10,455	1	10,455	7,744	0,011**
	Dentro de grupos	27,002	20	1,35	,	,
	Total	37,457	21			
A_MN	Entre grupos	40,181	1	40,181	7,478	0,013**
_	Dentro de grupos	107,468	20	5,373	Ź	,
	Total	147,649	21	,		
SH_MD	Entre grupos	0,01	1	0,01	1,801	0,195
_	Dentro de grupos	0,112	20	0,006	Ź	,
	Total	0,122	21	ŕ		
FR MN	Entre grupos	0	1	0	0,046	0,833
_	Dentro de grupos	0,003	20		Ź	,
	Total	0,003	21			
PAFR	Entre grupos	0,002	1	0,002	1,125	0,302
	Dentro de grupos	0,037		0,002	,	*
	Total	0,039	21	***		
ΑI	Entre grupos	125,477	1	125,477	14,001	0.001***
	Dentro de grupos	179,238		8,962	,	· , * * -
	Total	304,714	21	-,		
T:1 4	fianza: *90%, **95%, ***99		- 1			

I	TICHA DE ANALISIS ESTADIST	TÍCOS-DIFERENCIAS		
Recorte Territorial: 10 kilometros Número de Casos: 22 (11 por cada año) Año:2020 Y 202				
	Uso de Suelo)		
Suelo Boscoso	Cuerpo de Agua	Suelo Agrícola	Suelo Urbano	

	Suelo Natural no Bocoso					
Pruebas de norma						
Metric	cas del Paisaje	•	gorov-S	mirnov	Distribución	Distribución Lib
		Estadístico	gl	Sig.	Normal	Distribution 2.
1	PLAND	0,146	22	,2001	X	
2	NP	0,116	22	,2001	X	
3	PD	0,117	22	,2001	X	
4	LPI	0,245	22	0,001***		X
5	LSI	0,165	22	0,121	X	
6	A_MN	0,26	22	<,001***		X
7	SH_MN	0,153	22	0,197	X	
8	SH_MD	0,231	22	0,003***		X
9	FR_MN	0,098	22	,2001	X	
10	FR_MD	0,204	22	0,018**		X
11	PAFR	0,187	22	0,044**		X
12	ENN_MN	0,234	22	0,003***		X
13	AI	0,139	22	$,200^{1}$	X	
Esto es un límite	inferior de la significacio	ón verdadera				0 Casos pérdidos
	-Wallis para muestras in					•
Hipótesis nula				Sig.	Decisión	
•	s en LPI entre categorías	s de YEAR.		0,2	Conserve la hipóte	sis nula.
-	s en A_MN entre catego			0,045**	Rechace la hipótes	
-	s en SH_MD entre categor			0,507	Conserve la hipóte	
-	is en FR_MD entre categ			0,947	Conserve la hipóte	
-	is en PAFR entre categor			0,974	Conserve la hipóte	
	s en ENN_MN entre cate			0,412	Conserve la hipóte	
	estras con distribución no			0,412	Conserve la impote	sis iluia.
Trucoa i para mu	estras con distribución ne		-1	M - 4: 4-/4:	F	G:-
DI AND		Suma de cuadrados	gl	Media cuadrática		Sig.
PLAND	Entre grupos	6,452	1	6,452	0,082	0,777
	Dentro de grupos	1565,115	20	78,256		
	Total	1571,567	21			
NP	Entre grupos	1144560,182	1	1144560,182	6,19	0,022**
	Dentro de grupos	3697955,636	20	184897,782		
	Total	4842515,818	21			
PD	Entre grupos	113,724	1	113,724	6,178	0,022**
	Dentro de grupos	368,178	20	18,409		
	Total	481,902	21			
LSI	Entre grupos	885,371	1	885,371	7,774	0,011**
	Dentro de grupos	2277,642	20	113,882		
	Total	3163,013	21			
SH_MN	Entre grupos	0,01	1	0,01	4,564	0,045**
_	Dentro de grupos	0,044	20	0,002		
	Total	0,054	21	,		
FR MN	Entre grupos	0	1	0	2,829	0,108
	Dentro de grupos	0,001	20	0	2,027	0,100
	Total	0,001	21			
AI	Entre grupos	63,697	1	63,697	8,614	0.008***
. 11	Dentro de grupos	147,894	20	7,395	0,017	0,000
	Total	211,591	21	1,373		
Niveles de confiar			21			
Niveles de confiar	nza: *90%, **95%, ***9		21			
	FI	CHA DE ANALISIS ES	TADIS	TÍCOS-DIFERENC	CIAS	
Recorte Territoria	l: 10 kilometros	Número de Caso				Año:2020 Y 20
		Uso	de Sue	lo		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		Suelo A	Agrícola	Suelo Urbano

Pruebas de norma	anuau					
Metr	icas del Paisaje		_	Smirnov	Distribución	Distribución Libre
		Estadístico	gl	Sig.	Normal	
1	PLAND	0,21	22	0,013**	37	X
2	NP	0,135	22	,2001	X	
3	PD	0,134	22	,2001	X	37
4	LPI	0,309	22	<,001***	v	X
5	LSI	0,097	22	,2001	X	
6	A_MN	0,163	22	0,13	X	
7	SH_MN	0,129	22	,2001	X	37
8	SH_MD	0,297	22	<,001***	37	X
9	FR_MN	0,126	22	,2001	X	37
10	FR_MD	0,2	22	0,022**	37	X
11	PAFR	0,129	22	,2001	X	
12	ENN_MN	0,146	22	,2001	X	
13	AI	0,107	22	,2001	X	
	e inferior de la significació	on verdadera.				
0 Casos pérdidos						
Drughe de Venete	al-Wallis para muestras in	denendientes				
Hipótesis nula	11- 11 ams para muesuas m	acpenaiences		Sig.	Decisión	
	as en PLAND entre categ	orías de VEAR		0.006***	Rechace la hipótes	is mula
	as en LPI entre categorías			0,000***	Rechace la hipótes	
•	as en SH_MD entre categorias			0,241	Conserve la hipótes	
	as en FR_MD entre categ			0,792	Conserve la hipóte	
No hay diference	as en FK_WD entre categ	orias de TEAK.		0,792	Conserve la impore	sis iluia.
Prueba F para mu	estras con distribución no	rmal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	89856,182	1	89856,182	0,76	0,394
	Dentro de grupos	2365377,091	20	118268,855	-,	- /
	Total	2455233,273	21			
PD	Entre grupos	8,997	1	8,997	0,765	0,392
	Dentro de grupos	235,327	20	11,766	*,, **	*,**
	Total	244,324	21	,,		
LSI	Entre grupos	33,457	1	33,457	0,473	0,499
	Dentro de grupos	1413,287	20	70,664	-,	*,***
	Total	1446,744	21	70,00.		
A MN	Entre grupos	2,425	1	2,425	30,281	<,001***
71_11111	Dentro de grupos	1,601	20	0,08	30,201	,001
	Total	4,026	21	0,00		
SH MN	Entre grupos	0,002	1	0,002	2,534	0,127
SII_IVIIN	Dentro de grupos	0,002	20	0,002	2,334	0,127
	Total	0,013	21	0,001		
ED MN		0,017	1	0	1,481	0,238
FR_MN	Entre grupos				1,401	0,238
	Dentro de grupos Total	0	20 21	U		
DAED				0.006	12 020	0,002***
PAFR	Entre grupos Dentro de grupos	0,006	1	0,006	13,029	0,002***
	<i>U</i> 1	0,008	20	0		
ENINI MOT	Total	0,014	21	19.050	0.04	0.944
ENN_MN	Entre grupos	18,059	1	18,059	0,04	0,844
	Dentro de grupos	9124,895	20	456,245		
4.T	Total	9142,955	21	226.764	20.014	. 001444
AI	Entre grupos	226,764	1	226,764	29,814	<,001***
	Dentro de grupos	152,119	20	7,606		
N: 1 : ~	Total	378,883	21			
Niveles de confia	ınza: *90%, **95%, ***9	9%				

Grupo 1.5. RT1 (10 km) - Análisis estadístico de diferencias entre 2020 y 2022 en el eje fluvial 2: río Napo

	FICHA DE	ANALISIS ESTADISTÍCO	S-DIFERENCIAS		
Recorte Territorial:	Recorte Territorial: 10 kilometros Número de Casos: 70 (35 por cada año) Año: 2020 y 2022				
		Uso de Suelo			
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	Suelo Agrícola	Suelo Urbano	

Pruebas de norm	nalidad					
M	etricas del Paisaje	Kolmog	gorov-S	Smirnov	Distribución	Distribución Lib
171	cureas der r aisaje	Estadístico	gl	Sig.	Normal	Distribución Lio
1	PLAND	0,143	70	0,001***		X
2	NP	0,13	70	0,005***		X
3	PD	0,13	70	0,005***		X
4	LPI	0,093	70	,2001	X	
5	LSI	0,082	70	,200 ¹	X	
6	A_MN	0,372	70	<,001***		X
7	SH_MN	0,091	70	$,200^{1}$	X	
8	SH_MD	0,38	70	<.001***		X
9	FR MN	0,082	70	,200¹	X	
10	_	,		<.001***		X
	FR_MD	0,171	70	· ·		X
11	PAFR	0,34	70	<,001***		X
12	ENN_MN	0,36	70	<,001***	37	Λ
13	AI	0,093	70	,2001	X	
	te inferior de la significación					0 Casos pérdidos
rueba de Krusk	al-Wallis para muestras inde	ependientes				
lipótesis nula				Sig.	Decisión	
No hay diference	cias en PLAND entre categor	rías de YEAR.		0,013**	Rechace la hipó	tesis nula.
-	cias en NP entre categorías d			0,002***	Rechace la hipó	
-	cias en PD entre categorías d			0,002***	Rechace la hipó	
-	cias en A_MN entre categorí			0,003***	Rechace la hipó	
-	eias en SH_MD entre categor			0,043**	Rechace la hipó	
-	eias en FR_MD entre categor			0,561	Conserve la hip	
-	cias en PAFR entre categoría			<,001*** 0.002***	Rechace la hipó	
	cias en ENN MN entre categuestras con distribución non			0,002	Rechace la hipó	tesis nuia.
1		Suma de cuadrados	gl	Media cuadrática	F	Sig.
.PI	Entre grupos	484,981	1	484,981	1,17	0,283
	Dentro de grupos	28179,749	68	414,408	,	,
	Total	28664,729	69			
SI	Entre grupos	585,339	1	585,339	14,314	<,001***
	Dentro de grupos	2780,754	68	40,893		
	Total	3366,093	69			
H_MN	Entre grupos	0,008	1	0,008	1,679	0,199
	Dentro de grupos	0,326	68	0,005		
	Total	0,334	69			
R_MN	Entre grupos	0	1	0	1,132	0,291
	Dentro de grupos	0,005	68	0		
	Total	0,006	69			
AI.	Entre grupos	10,497	1	10,497	13,188	<,001***
	Dentro de grupos	54,126	68	0,796		
	Total anza: *90%, **95%, ***99%	64,623	69			

	FIC	HA DE ANALISIS ESTADIST	COS-DIFERENCIAS	
Recorte Territoria	l: 10 kilometros	Número de Casos: 70 (35	por cada año)	Año: 2020 y 2022
		Uso de Suelo		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua	Suelo Agrícola	Suelo Urbano

Pruebas de nor	rmalidad					
Met	tricas del Paisaje		nogorov-S		Distribución	Distribución Libr
		Estadístico	gl	Sig.	Normal	
1	PLAND	0,161	70	<,001***		X
2	NP	0,206	70	<,001***		X
3	PD	0,207	70	<,001***		X
4	LPI	0,343	70	<,001***		X
5	LSI	0,165	70	<,001***		X
6	A_MN	0,266	70	<,001***		X
7	SH_MN	0,119	70	0,015**		X
8	SH_MD	0,178	70	<,001***		X
9	FR_MN	0,064	70	,200 ¹	X	
10	FR_MD	0,102	70	0,07	X	
11	PAFR	0,205	70	<,001***		X
12	ENN_MN	0,205	70	<,001***		X
13	AI	0,089	70	,2001	X	_
Esto es un lín	nite inferior de la signific	ación verdadera.				
Casos pérdid	los					
rueba de Kru	skal-Wallis para muestras	s independientes				
lipótesis nula		1		Sig.	Decisión	
•	ncias en PLAND entre ca	tegorías de VEAR		0,171	Conserve la hipó	stecic nula
•	ncias en NP entre categor	•		0,685	Conserve la hipó	
-	ncias en PD entre categor			0,685	Conserve la hipó	
-	=			0,499	Conserve la hipó	
-	ncias en LPI entre catego			0,499	•	
•	ncias en LSI entre catego			*	Conserve la hipó	
•	ncias en A_MN entre cate	_		0,442	Conserve la hipó	
•	ncias en SH_MN entre ca	•		<,001***	Rechace la hipót	
-	ncias en SH_MD entre ca	_		<,001***	Rechace la hipót	
•	ncias en PAFR entre cate	_		0,006***	Rechace la hipót	
	ncias en ENN MN entre muestras con distribución			0,694	Conserve la hipó	tesis nula.
Tueba F para	indestras con distribución			36.11 1.61	r	G.
TD. MOI	F.	Suma de cuadrados	gl	Media cuadrática		Sig. <.001***
R_MN	Entre grupos	0,003	1	0,003	26,068	<,001***
	Dentro de grupos	0,009	68	0		
	Total	0,012	69			
R_MD	Entre grupos	0,001	1	0,001	9,199	0,003***
	Dentro de grupos	0,01	68	0		
	Total	0,011	69			
AI	Entre grupos	76,477	1	76,477	1,163	0,285
	Dentro de grupos	4470,889	68	65,748		
T' 1 1	Total	4547,366	69			
viveies de con	ifianza: *90%, **95%, **	799%				
Pagarta Tamita	orial: 10 kilometros	Número de		(35 por cada año)	NCIAS	Año: 2020 y 20
CCORE TEITH	onal to knoinctios		Jso de Sue	· 1		A110. 2020 y 20
Suelo Boscos	Suelo Natural n				elo Agrícola	Suelo Urbano

36	and del Delevie	Kolmog	orov-S	mirnov	Distribución	Distalleration 7.19
Metri	cas del Paisaje	Estadístico	gl	Sig.	Normal	Distribución Libre
1	PLAND	0,116	69	0,023**		X
2	NP	0,086	69	,200¹	X	
3	PD	0,087	69	,200¹	X	
		ŕ				X
4	LPI	0,176	69	<,001***	v	Λ
5	LSI	0,104	69	0,062	X	••
6	A_MN	0,306	69	<,001***		X
7	SH_MN	0,165	69	<,001***		X
8	SH_MD	0,164	69	<,001***		X
9	FR_MN	0,101	69	0,081	X	
10	FR_MD	0,08	69	$,200^{1}$	X	
11	– PAFR	0,422	69	<.001***		X
12		ŕ		<,001		X
	ENN_MN	0,311	69	· ·	X	Λ
13	AI	0,104	69	0,059	Λ	
	inferior de la significaci	on verdadera.				
1 Caso pérdido Prueba de Kruska	l-Wallis para muestras in	denendientes				
	ı- w ams para muestras in	acpenaientes				
Hipótesis nula				Sig.	Decisión	
-	as en PLAND entre categ			0,47	Conserve la hipóte	
-	as en LPI entre categorías			0,31	Conserve la hipóte	
•	as en A_MN entre catego			0,104	Conserve la hipóte	
No hay diferencia	as en SH_MN entre categ	orías de YEAR.		0,618	Conserve la hipóte	esis nula.
No hay diferencia	as en SH_MD entre categ	gorías de YEAR.		0,715	Conserve la hipóte	esis nula.
	as en PAFR entre categor			0,738	Conserve la hipóte	esis nula.
No hay diferencia	as en ENN_MN entre cat	egorías de YEAR.		0,04**	Rechace la hipótes	sis nula.
Prueba F para mu	estras con distribución no	ormal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	775,557	1	775,557	1,121	0,293
	Dentro de grupos	47035,886	68	691,704		
	Total	47811,443	69			
PD	Entre grupos	0,077	1	0,077	1,111	0,296
	Dentro de grupos	4,683	68	0,069		
	Total	4,759	69			
LSI	Entre grupos	8,526	1	8,526	0,782	0,38
	Dentro de grupos	741,434	68	10,903		
	Total	749,96	69			
FR MN	Entre grupos	0	1	0	0,006	0,938
_	Dentro de grupos	0,03	68	0		
	Total	0,03	69			
FR MD	Entre grupos	0	1	0	0,001	0,974
	Dentro de grupos	0,078	68	0,001	- y -	
	Total	0,078	69)		
AI	Entre grupos	11,973	1	11,973	1,547	0,218
	Dentro de grupos	526,196	68	7,738	-,,	
	Total	538.169	69	. 7. + 4		
Niveles de confia	nza: *90%, **95%, ***9	9%	- 07			
	, ,					
				1 a a a =		
D (77)		CHA DE ANALISIS EST.			IAS	12 2022 222
Recorte Territoria	il: 10 kilometros	Número de Casos	•	*		Año: 2020 y 2022
		Uso d	e Suel)		
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua		Suelo A	Agrícola	Suelo Urbano
Pruebas de norma	lidad					
3.6	cas del Paisaje	Kolmogo	mov Cr	nirnov		Distribución Libro

		Estadístico	gl	Sig.	Distribución	
					Normal	X
1	PLAND	0,156	70	<,001***	X	Λ
2	NP	0,086	70	,2001		
3	PD	0,086	70	,2001	X	••
4	LPI	0,272	70	<,001***		X
5	LSI	0,066	70	,200 ¹	X	
6	A_MN	0,301	70	<,001***		X
7	SH_MN	0,105	70	0,052	X	
8	SH_MD	0,208	70	<,001***		X
9	FR_MN	0,088	70	,2001	X	
10	FR_MD	0,196	70	<,001***		X
11	PAFR	0,06	70	,200 ¹	X	
12	ENN_MN	0,322	70	<,001***		X
13	– AI	0,15	70	<.001***		X
¹ Esto es un límite	inferior de la significaci					
0 Casos pérdidos						
Prueba de Kruskal	-Wallis para muestras in	ndependientes				
Hipótesis nula				Sig.	Decisión	
No hay diferencia	s en PLAND entre cate	gorías de YEAR.		<,001***	Rechace la hipóte	sis nula.
•	s en LPI entre categoría			<,001***	Rechace la hipóte	sis nula.
	s en A_MN entre catego			<,001***	Rechace la hipóte	
-	s en SH_MD entre cate	-		0,71	Conserve la hipót	
-	s en FR_MD entre cate			0,289	Conserve la hipót	
-	s en ENN_MN entre ca	-		0,031**	Rechace la hipóte	
	s en AI entre categorías stras con distribución n			0,015**	Rechace la hipóte	sis nula.
Trucoa i para muc	stras con distribución n	Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	1281155,714	1	1281155,714	2,99	0,088*
INI	Dentro de grupos	29141037,49	68	428544,669	2,99	0,000
	Total	30422193,2	69	120311,007		
PD	Entre grupos	127,113	1	127,113	2,986	0,089*
	Dentro de grupos	2894,422	68	42,565	,	,
	Total	3021,536	69			
LSI	Entre grupos	1135,313	1	1135,313	8,473	0,005***
	Dentro de grupos	9111,931	68	133,999		
	Total	10247,243	69			
SH_MN	Entre grupos	0,021	1	0,021	11,176	0,001***
	Dentro de grupos	0,125	68	0,002		
	Total	0,146	69			
FR_MN	Entre grupos	0	1	0	0,005	0,942
	Dentro de grupos	0,003	68	0		
PAFR	Total Entre grupos	0,003	69	0	0,004	0,949
PAFK	Dentro de grupos	0,093	68	0,001	0,004	0,949
	Total	0,093	69	0,001		
Niveles de confian	za: *90%, **95%, ***9					
D (T :: 1		CHA DE ANALISIS ES			CIAS	A ~ 2020 202
Recorte Territorial	: 10 kilometros	Número de Caso	os: 70 (3 de Sue			Año: 2020 y 202
Suelo Boscoso	Suelo Natural no Bocoso	Cuerpo de Agua			Agrícola	Suelo Urbano
Drughos do manus -1	idad					
Pruebas de normal		Volume	orov C	mirnov		Distribución Libr
ivietrica	as del Paisaje	Kolmog	;U1 UV-S	IIIII IIUV		Distribution Libr

		Estadístico	gl	Sig.	Distribución Normal	
1	PLAND	0,307	70	<.001***	inormai	X
2	NP	0,076	70	,2001	X	
3	PD	0,076	70	,200¹	X	
4	LPI	0,428	70	<,001***		X
5	LSI	0,085	70	,2001	X	
6	A MN	0,296	70	<.001***		X
7	SH_MN	0,091	70	,200¹	X	
8	SH_MD	0,185	70	<,001***		X
9	FR MN	0,06	70	,2001	X	
10	FR MD	0,158	70	<,001***		X
11	PAFR	0,053	70	,2001	X	
12	ENN MN	0,222	70	<,001***		X
13	AI	0,084	70	,2001	X	
	te inferior de la significac		,,,	,200		
Casos pérdido	_	ion verdudera.				
	cal-Wallis para muestras in	ndependientes				
Hipótesis nula				Sig.	Decisión	
No hay diferend	cias en PLAND entre cate	gorías de YEAR.		0,019**	Rechace la hipóte	sis nula.
-	cias en LPI entre categoría	-		0,002***	Rechace la hipóte	
No hay diferen	cias en A_MN entre catego	orías de YEAR.		<,001***	Rechace la hipóte	
No hay diferend	cias en SH_MD entre cate	gorías de YEAR.		0,225	Conserve la hipóte	esis nula.
No hay diferend	cias en FR_MD entre cate	gorías de YEAR.		0,732	Conserve la hipóte	esis nula.
No hay diferend	cias en ENN_MN entre ca	tegorías de YEAR.		0,401	Conserve la hipóte	esis nula.
Prueba F para m	nuestras con distribución n	ormal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	216395,2	1	216395,2	2,425	0,124
	Dentro de grupos	6067943,6	68	89234,465		
	Total	6284338,8	69			
	10141			21 424		0,125
PD	Entre grupos	21,424	1	21,424	2,416	0,123
PD		21,424 602,925	1 68	21,424 8,867	2,416	0,123
PD	Entre grupos				2,416	0,123
PD	Entre grupos Dentro de grupos	602,925	68	8,867	2,416	0,038**
	Entre grupos Dentro de grupos Total	602,925 624,349	68 69			
	Entre grupos Dentro de grupos Total Entre grupos	602,925 624,349 283,033	68 69 1	8,867 283,033		
LSI	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	602,925 624,349 283,033 4317,698	68 69 1 68	8,867 283,033		
LSI	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total	602,925 624,349 283,033 4317,698 4600,732	68 69 1 68 69	283,033 63,496	4,458	0,038**
LSI	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064	68 69 1 68 69	283,033 63,496 0,002	4,458	0,038**
LSI 5H_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos One grupos Dentro de grupos Dentro de grupos	602,925 624,349 283,033 4317,698 4600,732 0,002	68 69 1 68 69 1 68	283,033 63,496	4,458	0,038**
LSI SH_MN	Entre grupos Dentro de grupos Total	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066	68 69 1 68 69 1 68 69	283,033 63,496 0,002 0,001	4,458 2,08	0,038**
.SI SH_MN	Entre grupos Dentro de grupos Total Entre grupos	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066	68 69 1 68 69 1 68 69	283,033 63,496 0,002 0,001	4,458 2,08	0,038**
.SI 5H_MN FR_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Total Entre grupos	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066	68 69 1 68 69 1 68 69	283,033 63,496 0,002 0,001	4,458 2,08	0,038**
.SI 5H_MN FR_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066 0 0,001 0,001	68 69 1 68 69 1 68 69 1 68	8,867 283,033 63,496 0,002 0,001 0	4,458 2,08 1,952	0,038** 0,154 0,167
.SI 5H_MN FR_MN	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066 0 0,001 0,001 0,005 0,132	68 69 1 68 69 1 68 69 1	8,867 283,033 63,496 0,002 0,001 0 0	4,458 2,08 1,952	0,038** 0,154 0,167
_SI _SH_MN _FR_MN _PAFR	Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Total Total Entre grupos Dentro de grupos Total Total	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066 0 0,001 0,001 0,005 0,132 0,137	68 69 1 68 69 1 68 69 1 68 69	8,867 283,033 63,496 0,002 0,001 0 0,005 0,002	2,08 1,952 2,725	0,038** 0,154 0,167 0,103
	Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	602,925 624,349 283,033 4317,698 4600,732 0,002 0,064 0,066 0 0,001 0,001 0,005 0,132	68 69 1 68 69 1 68 69 1 68 69	8,867 283,033 63,496 0,002 0,001 0 0	4,458 2,08 1,952	0,038** 0,154 0,167

Grupo 2.1. RT2 (1 km) -Análisis estadístico de diferencias entre ejes fluviales para el año 2020

	FICI	HA DE ANALISIS EST	CADISTÍCOS	S-DIFERENCIAS		
Recorte Terr	ritorial: 1 kilometro		Número de	Casos: 38		Año:2020
		Uso	le Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción

1	Metricas del Paisaje	I	Kolmogorov-Smirnov			Distribució
	viculeas del 1 alsaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,168	37	0,01***		X
2	NP	0,134	37	0,092	X	
3	PD	0,134	37	0,092	X	
4	LPI	0,148	37	0,04**		X
5	LSI	0,06	37	,2001	X	
6	A_MN	0,269	37	<,001***		X
7	SH_MN	0,133	37	0,098	X	
8	SH_MD	0,096	37	,200*	X	
9	FR_MN	0,179	37	0,004***		X
10	FR_MD	0,118	37	$,200^{1}$	X	
11	ENN_MN	0,21	37	<,001***		X
12	AI	0,313	37	<,001***		X

1 Caso pérdido

Prueba de	Kruskal-Wallis para muestr	as independientes				
Hipótesis 1	nula		Sig.	Decisión		
No hay dif	ferencias en PLAND entre c	ategorías de EJE.	0,656	Conserve la hipóte	sis nula.	
No hay dif	ferencias en LPI entre catego	orías de EJE.	0,794	Conserve la hipóte	sis nula.	
No hay dif	ferencias en A_MN entre car	tegorías de EJE.	0,997	Conserve la hipóte	sis nula.	
No hay dif	ferencias en FR_MN entre c	ategorías de EJE.	0,076*	Conserve la hipóte	sis nula.	
No hay dif	ferencias en ENN_MN entre	e categorías de EJE.	0,014**	Rechace la hipótes	is nula.	
No hay dif	ferencias en AI entre categoi	rías de EJE.	0,977	Conserve la hipóte	sis nula.	
Prueba F p	oara muestras con distribució	ón normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	276,033	2	138,016	2,549	0,093*
	Dentro de grupos	1894,941	35	54,141		
	Total	2170,974	37			
PD	Entre grupos	275,261	2	137,63	2,552	0,092*
	Dentro de grupos	1887,895	35	53,94		
	Total	2163,156	37			
LSI	Entre grupos	6,34	2	3,17	1,956	0,157
	Dentro de grupos	56,733	35	1,621		
	Total	63,073	37			
SH_MN	Entre grupos	0,032	2	0,016	0,185	0,832
	Dentro de grupos	2,984	35	0,085		
	Total	3,016	37			
SH_MD	Entre grupos	0,052	2	0,026	0,423	0,658
	Dentro de grupos	2,136	35	0,061		
	Total	2,188	37			
FR_MD	Entre grupos	0,005	2	0,002	1,016	0,373
	Dentro de grupos	0,085	35	0,002		
	Total	0,09	37			

Niveles de confianza: *90%, **95%, ***99%

		FICHA DE AN	ALISIS EST	TADISTÍCOS-DIFER	ENCIAS	
Recorte Terri	itorial: 1 kilometro		Número de	Casos: 38		Año:2020
			Uso	le Suelo		
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de n	ormalidad					
Metrica	s del Paisaje	Kolm	ogorov-Smir	nov	Distribución Normal	

		Estadístico	gl	Sig.		Distribución Libre
1	PLAND	0,142	29	0,138	X	
2	NP	0,131	29	,2001	X	
3	PD	0,131	29	,2001	X	
4	LPI	0,243	29	<,001***		X
5	LSI	0,13	29	,2001	X	
6		0,435	29	<,001***		X
7	_	0,151	29	0,09	X	
8	SH_MD	0,39	29	<,001***		X
9	FR_MN	0,234	29	<,001***		X
10	_	0,284	29	<,001		X
11	ENN_MN	0,346	29	<,001		X
11	_	0,346	29	0,003***		X
		•		0,003***		A
Esto es un 11 Casos pérd		a significación verd	adera.			
		a muestras independ	ientes			
Hipótesis nul	la			Sig.	Decisión	
No hay difere	encias en LPI ent	re categorías de EJE	i	0,008***	Rechace la hipótesis nula.	
No hay difero	encias en A_MN	entre categorías de	ЕЈЕ.	0,032**	Rechace la hipótesis nula.	
No hay difere	encias en SH_MI	O entre categorías de	EJE.	0,278	Conserve la hipótesis nula.	
		N entre categorías de		0,055*	Rechace la hipótesis nula.	
		O entre categorías de		0,179	Conserve la hipótesis nula.	
		AN entre categorías		0,953	Conserve la hipótesis nula.	
-	_	e categorías de EJE.		0,045**	Rechace la hipótesis nula.	
		stribución normal		*,*		
		Suma de cuadra	dos gl	Media cı	ıadrática F	Sig.
PLAND	Entre grupos	8,032	2	4,016	3,541	0,043**
	Dentro de grupos	31,755	28	1,134	2,0 11	*,* **
	Total	39,787	30	1,131		
NP	Entre grupos	876,714	2	438,357	0,839	0,443
	• .	14620,706	28	522,168	0,037	0,113
	Dentro de grupos	15497,419	30	322,108		
DID.	Total	,		126 127	0.820	0.442
PD	Entre grupos	872,855	2	436,427	0,839	0,443
	Dentro de grupos	14562,007	28	520,072		
	Total	15434,862	30			
LSI	Entre grupos	15,246	2	7,623	1,117	0,341
	Dentro de grupos	191,06	28	6,824		
	Total	206,307	30			
SH_MN	Entre grupos	0,117	2	0,059	1,243	0,304
	Dentro de grupos	1,323	28	0,047		
	Total	1,441	30			
Niveles de co	onfianza: *90%, '	**95%, ***99%				
		FICHA D	E ANALISIS	S ESTADISTÍC	OS-DIFERENCIAS	
Recorte Terri	itorial: 1 kilometi			Número de Cas		Año:20
				Uso de Suelo		
Bosque	Vegetacio Inundab		de Agua	Cultivos	Pastos y Abustos Suelo Descubierto	Construcción
Pruebas de n	ormalidad					
Metr	ricas del Paisaje		Kolm	ogorov-Smirno	v	

		Estadístico	gl	Sig.	Distribución Normal	Distribución Libre
	1 PLAND	0,147	17	,2001	X	
2	2 NP	0,249	17	0,006***		X
3	3 PD	0,249	17	0,006***		X
4	4 LPI	0,13	17	,200¹	X	
5	5 LSI	0,189	17	0,11	X	
6		0,208	17	0,05**		X
7	_	0,159	17	,200¹	X	
8	_	0,23	17	0,017**		X
9	_	0,154	17	$,200^{1}$	X	
10	_	0,174	17	0,181	X	
11		0,324	17	<,001***		X
12		0,175	17	0,176	X	
¹ Esto es un lír	mite inferior de la sign			v,		
11 Casos pérd Prueba de Kru	didos uskal-Wallis para mue:	stras independientes				
Hipótesis nula	•	*		Sig.	Decisión	
	a encias en NP entre cate	gorías de EIE		0,002***	Rechace la hipóte	sis nula
	encias en PD entre cate	•		0,002	Rechace la hipóte	
	encias en A_MN entre	-		0,759	Conserve la hipót	
				0,047**	Rechace la hipóte	
	encias en SH_MD entre encias en ENN_MN en			0,101	Conserve la hipót	
	a muestras con distribu			0,101	Conscive la impor	esis iiuia.
Trucoa i para	i muestras con distribu	Suma de cuadrados	α1	Media cuadrática	F	Sig.
DI AND	Entre onunce		gl 			<,001***
PLAND	Entre grupos	4380,013		2190,006	18,371	<,001***
	Dentro de grupos	4053,117	34	119,209		
	Total	8433,13	36	1711 277	12.015	001444
LPI	Entre grupos	3482,711	2	1741,355	13,817	<,001***
	Dentro de grupos	4284,897	34	126,026		
	Total	7767,608	36			
LSI	Entre grupos	4,311	2	2,155	3,226	0,052*
	Dentro de grupos	22,715	34	0,668		
	Total	27,026	36			
SH_MN	Entre grupos	0,325	2	0,163	1,155	0,327
	Dentro de grupos	4,784	34	0,141		
	Total	5,109	36			
FR_MN	Entre grupos	0,002	2	0,001	0,996	0,38
	Dentro de grupos	0,038	34	0,001		
	Total	0,04	36			
FR_MD	Entre grupos	0,002	2	0,001	0,7	0,503
	Dentro de grupos	0,048	34	0,001		
	Total	0,05	36			
AI	Entre grupos	0,021	2	0,01	0,228	0,797
	Dentro de grupos	1,551	34	0,046		
	Total	1,572	36			
Niveles de co	onfianza: *90%, **95%			,		
		FICHA DE ANALIS		ÍCOS-DIFERENCIA	.S	
			Número de C	asos: 38		Año:202
Recorte Territ	torial: 1 kilometro					
Recorte Territ			Uso de Suelo			
Recorte Territ Bosque	torial: 1 kilometro Vegetación Inundable	Cuerpo de Agua	Uso de Suelo Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Bosque	Vegetación Inundable	Cuerpo de Agua				Construcción
Bosque Pruebas de no	Vegetación Inundable			Pastos y Abustos		Construcción Distribución

Metricas	s del Paisaje	Ko Estadístico	olmogorov-Smir gl	enov Sig.	Distribución Normal	Distribución Libre
Pruebas de norn	nalidad					
Bosque	Vegetacion Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Descubierto	Construcción
	Vegetación				Suelo	
1.55516 16111101	I KIIOIIICHU		Uso de Suelo			Ano.20
Recorte Territor	rial: 1 kilometro		Número de C			Año:20
		FICHA DE ANALI	SIS ESTADIST	ÍCOS-DIFERENCIA	S	
Niveles de confi	ianza: *90%, **95	%, ***99%				
	Total	77,028	36			
	Dentro de grupos	63,759	34	1,875	•	,
AI	Entre grupos	13,269	2	6,635	3,538	0,04**
	Total	0,069	36	0,002		
FR_MD	Entre grupos Dentro de grupos	0,006 0,063	34	0,003	1,/10	0,173
ED MD	Total	0,045	36	0,003	1,716	0,195
	Dentro de grupos	0,042	34	0,001		
FR_MN	Entre grupos	0,003	2	0,001	1,064	0,356
	Total	1,625	36			
	Dentro de grupos	1,491	34	0,044		
SH_MD	Entre grupos	0,134	2	0,067	1,528	0,231
	Total	1,287	36	,		
	Dentro de grupos	1,217	34	0,036	-,- -	0,000
SH MN	Entre grupos	0,07	2	0,035	0,982	0,385
	Total	196,755	36	4,773		
LSI	Entre grupos Dentro de grupos	34,406 162,349	2 34	17,203 4,775	3,603	0,038**
CI	Entra	Suma de cuadrados	gl 2	Media cuadrática	F 2 602	Sig. 0,038**
rrueba F para m	nuestras con distrib		-1	M-4: 17:	E	g:-
		entre categorías de EJE.		0,75	Conserve la hipót	esis nula.
•	_	e categorías de EJE.		0,19	Conserve la hipót	
-	ias en LPI entre ca	-		0,249	Conserve la hipót	
-	ias en PD entre cat	-		0,154	Conserve la hipót	
-	ias en NP entre cat	-		0,154	Conserve la hipót	
•		re categorías de EJE.		0,423	Conserve la hipót	
Hipótesis nula				Sig.	Decisión	
Prueba de Krusk	kal-Wallis para mu	estras independientes				
2 Casos pérdido	S					
¹ Esto es un límit	te inferior de la sig	nificación verdadera.				
12	AI	0,105	36	,2001	X	
11	ENN_MN	0,273	36	<,001***		X
10	FR_MD	0,119	36	,2001	X	
9	FR_MN	0,136	36	0,088	X	
8	SH_MD	0,119	36	,2001	X	
7	SH_MN	0,084	36	,2001	X	
6	A_MN	0,303	36	<,001***		X
5	LSI	0,131	36	0,121	X	
4	LPI	0,292	36	<,001***		X
3	PD	0,173	36	0,008***		X
2	NP	0,173	36	0,008***		X
		· ·		,		

	4 LPI 5 LSI	0,192 0,112	36 36	0,002*** ,200 ¹	X	X
	6 A MN	0,238	36	<.001***		X
	7 SH MN	0,068	36	,2001	X	
	8 SH MD	0,128	36	0,144	X	
	9 FR MN	0,092	36	,200¹	X	
10	_	0,09	36	,200¹	X	
1	_	0,299	36	<,001***		X
12		0,139	36	0,077*		X
		nificación verdadera.	30	0,077		
2 Casos pérdid	_	inneacion verdadera.				
-		estras independientes				
Hipótesis nula				Sig.	Decisión	
•	icias en PLAND entr	re categorías de EJE.		0,555	Conserve la hipóte	esis nula.
-	ncias en NP entre cat	-		0,635	Conserve la hipóte	
-	ncias en PD entre cat			0,623	Conserve la hipóte	
•	icias en LPI entre cat	•		0,814	Conserve la hipóte	
	ncias en A_MN entre			0,363	Conserve la hipóte	
•	icias en ENN_MN ei icias en AI entre cate	ntre categorías de EJE.		0,237 0,415	Conserve la hipóte Conserve la hipóte	
	muestras con distribi			0,413	Conscive la impote	Sis iluia.
rusour para		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	1,323	2	0,661	0,113	0,894
201	Dentro de grupos	193,325	33	5,858	0,113	0,074
	Total	194,648	35	3,030		
SH_MN	Entre grupos	0,016	2	0,008	0,318	0,729
511_WIIV		0,817	33	0,025	0,510	0,727
	Dentro de grupos	0,833	35	0,023		
SH MD	Total	0,003	2	0,002	0,081	0.022
SH_MD	Entre grupos	0,663	33	0,002	0,061	0,922
	Dentro de grupos	0,666	35	0,02		
ED AOI	Total			0	0.057	0.045
FR_MN	Entre grupos	0	2	0	0,057	0,945
	Dentro de grupos	0,031	33	0,001		
	Total	0,032	35	0.004	0.501	0.565
FR_MD	Entre grupos	0,001	2	0,001	0,581	0,565
	Dentro de grupos	0,042	33	0,001		
Niveles de con	Total ifianza: *90%, **95%	0,044	35			
viveres de con	Tianza. 7070, 737	, , , , , , , , , , , , , , , , , , , ,				
		FICHA DE ANALIS	SIS ESTADIST	ÍCOS-DIFERENCIA	S	
Recorte Territo	orial: 1 kilometro		Número de C	asos: 38		Año:202
			Uso de Suelo)		
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
	malidad					
ruebas de nor			lmogorov-Smir	rnov	51.19.11	
	110	Ko	1111020101-211111			
	as del Paisaje		_		Distribución Normal	Distribución Libre
	as del Paisaje	Estadístico 0,184	gl 31	Sig. 0,009***	Normal	Distribución Libre X

4 LPI 0,214 31 < .001*** X 5 LSI 0,136 31 0,15 X 7 SH_MN 0,14 31 .000*** X 8 SH_MD 0,24 31 .200° X 8 SH_MD 0,24 31 .001** X 9 FR_MN 0,141 31 .001** X 10 FR_MD 0,199 31 .0003*** X 11 ENN_MN 0,363 31 .001** X Esto es un limite inferior de la significación verdadera. **Casos péridos*** **Tueba de Kruskal-Wallis para muestras independientes** Lipótesis nula **On bay diferencias en PLAND entre categorías de EJE. **On bay diferencias en PLAND entre categorías de EJE. **On bay diferencias en PL en							_
S. LSI	3		*	31			X
A	4		0,314	31			X
7 SH_MN 0,112 31 ,200° X 8 SH MD 0,24 31	:	5 LSI	0,136	31	ŕ	X	
8 SII_MD 0.24 31	(6 A_MN	0,34	31			X
9 FR. MN 0,141 31 0,1199 X 10 FR. MD 0,199 31 0,003*** X 11 ENN MN 0,363 31 <0,001*** X 2 A1 0,128 31 <0,001*** X Esto es un limite inferior de la significación verdadera. Peusos pérdidos Prueba de Kruskal-Wallis para muestras independientes Lipótesis nula Sig. Decisión No hay diferencias en Pl-AND entre categorías de EJE. No hay diferencias en Pl-AND entre categorías de EJE. No hay diferencias en Pl- entre categorías de EJE. No hay diferencias en Pl- entre categorías de EJE. No hay diferencias en EN MN entre categorías de EJE. No hay diferencias en FR. MD entre categorías	,	7 SH_MN	0,112	31	,2001	X	
1	;	8 SH_MD	0,24	31	<,001***		X
1 ENN MN 0,363 31 0,001*** X	9	9 FR_MN	0,141	31	0,119	X	
12 Al	10	0 FR_MD	0,199	31	0,003***		X
Esto es un limite inferior de la significación verdadera.	1	1 ENN_MN	0,363	31	<,001***		X
Process pérdidos	12	2 AI	0,128	31	$,200^{1}$	X	
Principa de Kruskal-Wallis para muestras independientes	^l Esto es un lím	nite inferior de la sig	gnificación verdadera.				
Fightesis nula	7 Casos pérdid	los					
Fightesis nula	Drugho da Kru	skal Wallis nara mi	actros independientes				
No hay diferencias en PLAND entre categorías de EJE.		•	destras independientes		Sig	Dagisión	
No hay diferencias en NP entre categorias de EJE.	•		44				
No hay diferencias en PD entre categorías de EJE.	•		•		ŕ	-	
No hay differencias en LPI entre categorías de EJE.							
No hay differenciase on A_MN entre categorias de EJE.	-		-		ŕ	_	
No hay diferencias en SH_MD entre categorías de EJE.	•		•		*	_	
No hay diferencias en FR_MD entre categorías de EJE. 0,139 Conserve la hipótesis nula. No hay diferencias en ENN MN entre categorías de EJE. 0,075* Rechace la hipótesis nula. Prueba F para muestras con distribución normal Suma de cuadrados gl Media cuadrática F Sig. SI Entre grupos 12,132 2 6,066 0,815 0,452 Dentro de grupos 230,724 31 7,443 Total 242,856 33 SH_MN Entre grupos 0,101 2 0,051 2,448 0,103 Dentro de grupos 0,642 31 0,021 Total 0,744 33 FR_MN Entre grupos 0,003 2 0,001 1,846 0,175 Dentro de grupos 0,003 2 0,001 1,846 0,175 Dentro de grupos 0,022 31 0,001 Total 0,025 33 AI Entre grupos 31,191 2 15,595 5,574 0,009*** Número de Casos: 38 Año: 20 Siveles de confianza: *90%, **95%, ***99% FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS Recorte Territorial: 1 kilometro					*	_	
No hay diferencias en ENN MN entre categorías de EJE. 0,075 * Rechace la hipótesis nula.	•	-	•		0,088*	_	
Suma de cuadrados gl Media cuadrática F Sig.	-	_	-		*	_	
Suma de cuadrados gl Media cuadrática F Sig.					0,075*	Rechace la hipóte	sis nula.
SI	Prueba F para	muestras con distrib	oución normal				
Dentro de grupos 230,724 31 7,443 7,			Suma de cuadrados	gl	Media cuadrática	F	Sig.
Total 242,856 33	LSI	Entre grupos	12,132	2	6,066	0,815	0,452
SH_MN		Dentro de grupos	230,724	31	7,443		
Dentro de grupos 0,642 31 0,021 Total 0,744 33 FR_MN		Total	242,856	33			
Total 0,744 33 33 34 33 34 34 34	SH_MN	Entre grupos	0,101	2	0,051	2,448	0,103
FR_MN		Dentro de grupos	0,642	31	0,021		
Dentro de grupos 0,022 31 0,001		Total	0,744	33			
Total 0,025 33 33	FR_MN	Entre grupos	0,003	2	0,001	1,846	0,175
Total 0,025 33 33		Dentro de grupos	0,022	31	0,001		
Al Entre grupos 31,191 2 15,595 5,574 0,009*** Dentro de grupos 86,74 31 2,798 Total 117,93 33 Niveles de confianza: *90%, **95%, ***99%			0,025	33			
Dentro de grupos 86,74 31 2,798 Total 117,93 33 Niveles de confianza: *90%, ***95%, ****99% FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS Recorte Territorial: 1 kilometro Número de Casos: 38 Año:20 Uso de Suelo Pruebas de normalidad Metricas del Paisaje Kolmogorov-Smirnov Estadístico gl Sig. Distribución Normal Libre 1 PLAND 0,161 19 ,200¹ X 2 NP 0,261 19 0,001*** X X	AI				15,595	5.574	0.009***
Total 117,93 33 Niveles de confianza: *90%, **95%, ***99% FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS Recorte Territorial: 1 kilometro Número de Casos: 38 Año:20 Uso de Suelo Uso de Suelo Pruebas de normalidad Metricas del Paisaje Kolmogorov-Smirnov Estadístico gl Sig. Distribución Normal Libre 1 PLAND 0,161 19 ,200¹ X 2 NP 0,261 19 0,001*** X		• .	· ·		ŕ	2,27.	0,000
Suelon			ŕ		2,770		
Recorte Territorial: 1 kilometro Número de Casos: 38 Año:20 Uso de Suelo Uso de Suelo Cuerpo de Agua Cultivos Pastos y Abustos Suelo Descubierto Construcción	Niveles de con						
Recorte Territorial: 1 kilometro Número de Casos: 38 Año:20 Uso de Suelo Uso de Suelo Cuerpo de Agua Cultivos Pastos y Abustos Suelo Descubierto Construcción							
Note			FICHA DE ANALIS	SIS ESTADIST	ÍCOS-DIFERENCIA	S	
Pruebas de normalidad	Recorte Territo	orial: 1 kilometro		Número de C	asos: 38		Año:20
Normal Pland Pla				Uso de Suelo)		
Metricas del Paisaje Kolmogorov-Smirnov Distribución Distribución Estadístico gl Sig. Normal Libre 1 PLAND 0,161 19 ,200¹ X 2 NP 0,261 19 0,001*** X	Bosque		Cuerpo de Agua	Cultivos	Pastos y Abustos		Construcción
Metricas del Paisaje Kolmogorov-Smirnov Distribución Distribución Estadístico gl Sig. Normal Libre 1 PLAND 0,161 19 ,200¹ X 2 NP 0,261 19 0,001*** X							
Estadístico gl Sig. Normal Libre			Vol	mogorov Smin	rnov		
1 PLAND 0,161 19 ,200 ¹ X 2 NP 0,261 19 0,001*** X	Metric	as del Paisaje					Distribución Libre
2 NP 0,261 19 0,001*** X		1 DI AND					Libre
2 11 0,201					*	Λ	\mathbf{v}
3 PD 0,26 19 0,001*** X					ŕ		
	3	3 PD	0,26	19	0,001***		X

0,168 0,171 N 0,21 MN 0,254 MD 0,239 MN 0,256 MD 0,134 _MN 0,403	n verdadera. ependientes e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19 19 19 19 19 19 19 19 19	0,165 0,146 0,027** 0,002*** 0,005*** 0,002*** ,200¹ <,001*** 0,013** Sig. 0,642 0,63 0,149 0,033** 0,036** 0,041**	-	oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
N 0,21 AN 0,254 AD 0,239 AN 0,256 AD 0,134 _MN 0,403	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19 19 19 19 19	0,027** 0,002*** 0,005*** 0,002*** ,200¹ <,001*** 0,013** Sig. 0,642 0,63 0,149 0,033** 0,036**	Decisión Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	X X X X X X X A A A A A A A A A A A A A	
MN 0,254 MD 0,239 MN 0,256 MD 0,134 MN 0,403 0,224 ior de la significación MP entre categorías d A_MN	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19 19 19 19	0,002*** 0,005*** 0,002*** ,200¹ <,001*** 0,013** Sig. 0,642 0,63 0,149 0,033** 0,036**	Decisión Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	X X X X X X X A A A A A A A A A A A A A	
MD 0,239 MN 0,256 MD 0,134 MN 0,403 0,224 dor de la significación MIs para muestras ind MP entre categorías d A_MN entre categorías d A_MN entre categorías d CBH_MN entre categorías d CBN_MN entre categorías d CBN_MN entre categorías d CBN_MN entre categorías d CBN_MN entre categorías d	n verdadera. lependientes e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19 19 19 19	0,005*** 0,002*** ,200¹ <,001*** 0,013** Sig. 0,642 0,63 0,149 0,033** 0,036**	Decisión Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	X X X X X X A A A A A A A A A A A A A A	
MN 0,256 MD 0,134 MN 0,403 0,224 ior de la significación llis para muestras ind NP entre categorías d A_MN entre categorí SH_MN entre categorí SH_MD entre categorí FR_MN entre categorí	n verdadera. dependientes e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19 19 19	0,002*** ,200¹ <,001*** 0,013** Sig. 0,642 0,63 0,149 0,033** 0,036**	Decisión Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	X X X X pótesis nula. pótesis nula. pótesis nula. pótesis nula.	
MD 0,134 MN 0,403 0,224 ior de la significación llis para muestras ind NP entre categorías d PD entre categorías d A_MN entre categorías GH_MN entre categorías H_MN entre categorías	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19 19	Sig. 0,642 0,033** 0,033** 0,036**	Decisión Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. oótesis nula. óótesis nula. óótesis nula.	
MN 0,403 0,224 for de la significación A PD entre categorías d A MN entre categorías d A MN entre categorías BH MD entre categorías CH MD entre	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19	<,001*** 0,013** Sig. 0,642 0,63 0,149 0,033** 0,036**	Decisión Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	pótesis nula. pótesis nula. pótesis nula. pótesis nula. pótesis nula.	
0,224 ior de la significación llis para muestras ind NP entre categorías d PD entre categorías d A_MN entre categorí SH_MN entre categorí SH_MD entre categorí FR_MN entre categorías FR_MN entre categorías FR_MN entre categorías	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.		0,013** Sig. 0,642 0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	pótesis nula. pótesis nula. pótesis nula. pótesis nula. pótesis nula.	
llis para muestras ind NP entre categorías d PD entre categorías d A_MN entre categorí SH_MN entre categorí SH_MD entre categor FR_MN entre categor FR_MN entre categor	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.	19	Sig. 0,642 0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
NP entre categorías d PD entre categorías d A_MN entre categorí SH_MN entre categor SH_MD entre categor FR_MN entre categor	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE.		0,642 0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
NP entre categorías de PD entre categorías de A_MN entre categorías de SH_MN entre categorías de Cat	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE. rías de EJE.		0,642 0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
NP entre categorías de PD entre categorías de A_MN entre categorías de SH_MN entre categorías de Cat	e EJE. e EJE. as de EJE. rías de EJE. rías de EJE. rías de EJE.		0,642 0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
PD entre categorías d A_MN entre categorí BH_MN entre categor BH_MD entre categor FR_MN entre categor ENN_MN entre categor	e EJE. as de EJE. rías de EJE. rías de EJE. rías de EJE.		0,642 0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
PD entre categorías d A_MN entre categorí BH_MN entre categor BH_MD entre categor FR_MN entre categor ENN_MN entre categor	e EJE. as de EJE. rías de EJE. rías de EJE. rías de EJE.		0,63 0,149 0,033** 0,036**	Conserve la hip Conserve la hip Rechace la hip Rechace la hip Rechace la hip	oótesis nula. oótesis nula. ótesis nula. ótesis nula.	
A_MN entre categorí SH_MN entre categor SH_MD entre categor FR_MN entre categor ENN_MN entre categor	as de EJE. rías de EJE. rías de EJE. rías de EJE.		0,149 0,033** 0,036**	Conserve la hipo Rechace la hipo Rechace la hipo Rechace la hipo	oótesis nula. ótesis nula. ótesis nula.	
SH_MN entre categor SH_MD entre categor FR_MN entre categor ENN_MN entre categor	rías de EJE. rías de EJE. rías de EJE.		0,033** 0,036**	Rechace la hipó Rechace la hipó Rechace la hipó	ótesis nula. ótesis nula.	
SH_MD entre categor FR_MN entre categor ENN_MN entre categor	rías de EJE. rías de EJE.		0,036**	Rechace la hipó	ótesis nula.	
FR_MN entre categor	rías de EJE.		*	Rechace la hipó		
ENN_MN entre categ			0,041**	-	ótesis nula.	
	gorías de EJE.			Rechace la hipótesis nula.		
			0,128	Conserve la hip	ótesis nula.	
AI entre categorías de	e EJE.		0,134	Conserve la hip	oótesis nula.	
con distribución nor	mal					
Suma	de cuadrados	gl	Media cuadrática	F	Sig.	
rupos 5905,9	986	2	2952,993	3,813	0,036**	
de grupos 18584	,461	24	774,353			
24490	,446	26				
rupos 5241,0)99	2	2620,549	3,364	0,052*	
-	,99	24	779			
23937	,088	26				
rupos 0,107		2	0,054	0,088	0,916	
de grupos 14,63		24	0,61			
	7	26				
rupos 0,005		2	0,003	2,683	0,089*	
de grupos 0,024		24	0,001			
0,029		26				
r	the grupos 18584 24490 tupos 5241, the grupos 18695 23937 tupos 0,107 the grupos 14,63 14,73 tupos 0,005 the grupos 0,024 0,029	18584,461 24490,446 upos 5241,099 de grupos 18695,99 23937,088 upos 0,107 de grupos 14,63 14,737 upos 0,005 de grupos 0,024	18584,461 24 24490,446 26 upos 5241,099 2 de grupos 18695,99 24 23937,088 26 upos 0,107 2 de grupos 14,63 24 14,737 26 upos 0,005 2 de grupos 0,024 24 0,029 26	18584,461 24 774,353 24490,446 26 upos 5241,099 2 2620,549 de grupos 18695,99 24 779 23937,088 26 upos 0,107 2 0,054 de grupos 14,63 24 0,61 14,737 26 upos 0,005 2 0,003 de grupos 0,024 24 0,001 0,029 26	18584,461 24 774,353 24490,446 26 1800 5241,099 2 2620,549 3,364 186 grupos 18695,99 24 779 23937,088 26 1800 0,107 2 0,054 0,088 1800 14,63 24 0,61 14,737 26 1800 0,005 2 0,003 2,683 1800 160 grupos 0,024 24 0,001 0,029 26	

Grupo 2.2. RT2 (1 km) -Análisis estadístico de diferencias entre ejes fluviales para el año 2022

	FIG	CHA DE ANALISIS	ESTADISTÍCO	OS-DIFERENCIAS		
Recorte Te	rritorial: 1 kilometro		Número de C	Casos: 38		Año:2022
		1	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad					
	Metricas del Paisaje	K Estadístico	olmogorov-Smi	rnov Sig.	Distribución Normal	Distribución Libre
1	PLAND	0,19	33	0,004***		X

2	NP	0,125	33	$,200^{1}$	X	
3	PD	0,125	33	$,200^{1}$	X	
4	LPI	0,156	33	0,039**		X
5	LSI	0,101	33	$,200^{1}$	X	
6	A_MN	0,235	33	<,001***		X
7	SH_MN	0,152	33	0,052	X	
8	SH_MD	0,115	33	$,200^{1}$	X	
9	FR_MN	0,137	33	0,122	X	
10	FR MD	0,117	33	$,200^{1}$	X	
11	ENN_MN	0,2	33	0,002***		X
12	AI	0,309	33	<,001***		X
¹ Esto es u	ın límite inferior de la signifi	cación verdadera.		•		
5 Casos pe		* 1 1 1 1				
	Kruskal-Wallis para muestra	as independientes				
Hipótesis		, , 1 ETE		Sig.	Decisión	. 1
-	ferencias en PLAND entre ca	-		0,083*	Rechace la hipót	
-	ferencias en LPI entre catego			0,023**	Rechace la hipót	
-	ferencias en A_MN entre cat	-		0,036**	Rechace la hipót	
	ferencias en ENN_MN entre			0,349	Conserve la hipó	
	ferencias en AI entre categor			0,031**	Rechace la hipót	esis nula.
Prueba F p	para muestras con distribució	n normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	27,391	2	13,695	0,527	0,595
	Dentro de grupos	882,933	34	25,969		
	Total	910,324	36			
PD	Entre grupos	27,307	2	13,654	0,528	0,595
	Dentro de grupos	879,331	34	25,863		
	Total	906,638	36			
LSI	Entre grupos	1,528	2	0,764	0,811	0,453
201	Dentro de grupos	32,036	34	0,942	0,011	0,.22
	Total	33,564	36	0,5 .2		
SH MN	Entre grupos	0,096	2	0,048	0,676	0,515
SII_WIIN	Dentro de grupos	2,406	34	0,071	0,070	0,313
	Total	2,501	36	0,071		
CII MD				0.122	1 222	0.20
SH_MD	Entre grupos	0,244	2	0,122	1,322	0,28
	Dentro de grupos	3,137	34	0,092		
	Total	3,381	36			
FR_MN	Entre grupos	0,006	2	0,003	1,066	0,355
	Dentro de grupos	0,092	34	0,003		
	Total	0,098	36			
FR_MD	Entre grupos	0,012	2	0,006	1,939	0,159
	Dentro de grupos	0,104	34	0,003		
> v: 1 1	Total	0,115	36,000			
Niveles de	e confianza: *90%, **95%, *	**99%				
		FICHA DE ANALISIS I	ESTADISTÍ	COS-DIFERENCIAS		
Recorte To	erritorial: 1 kilometro		Número de			Año:2022
		U	so de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Drughes d	e normalidad					
		Kolm	ogorov-Smii	nov	D' - " - ''	D' ' '' ''
N	Metricas del Paisaje	Estadístico	gl	Sig.	Distribución Normal	Distribución Libre
1	PLAND	0,202	31	0,002***	. willui	X
2	NP	0,142	31	0,111	X	23
3	PD	0,142	31	0,111	X	
4	LPI	0,142	31	<,001***	Λ	X
	LSI	0,233	31	,2001	X	Λ
5		*		,200° <,001***	Λ	v
6	A_MN	0,344	31	~,001		X

I						i
7	SH_MN	0,148	31	0,083	X	
8	SH_MD	0,126	31	,2001	X	
9	FR_MN	0,151	31	0,071	X	
10	FR_MD	0,116	31	$,200^{1}$	X	
11	ENN_MN	0,385	31	<,001***		X
12	AI	0,09	31	,200 ¹	X	
¹ Esto es un 7 Casos pér	límite inferior de la signific	cación verdadera.				
	Kruskal-Wallis para muestra	is independientes				
Hipótesis n		is macponarentes		Sig.	Decisión	
No hay dife	erencias en PLAND entre ca	itegorías de EJE.		0,066*	Rechace la hipóte	esis nula.
-	erencias en LPI entre catego	-		0,008***	Rechace la hipóte	
	erencias en A_MN entre cat			0,012**	Rechace la hipóto	
	erencias en ENN_MN entre			0,048**	Rechace la hipóto	
	ara muestras con distribució			-,		
1		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	258,095	2	129,048	0,495	0,614
111	Dentro de grupos	8341,047	32	260,658	0,473	0,014
	Total	8599,143	34	200,030		
DD				129 727	0.406	0.614
PD	Entre grupos	257,474	2	128,737	0,496	0,614
1	Dentro de grupos	8308,852	32	259,652		
* a*	Total	8566,327	34	2.20.5	0.765	0.554
LSI	Entre grupos	6,41	2	3,205	0,565	0,574
	Dentro de grupos	181,587	32	5,675		
	Total	187,997	34			
SH_MN	Entre grupos	0,023	2	0,011	0,231	0,795
	Dentro de grupos	1,567	32	0,049		
	Total	1,589	34			
SH_MD	Entre grupos	0,13	2	0,065	0,917	0,41
ı	Dentro de grupos	2,267	32	0,071		
	Total	2,397	34			
FR MN	Entre grupos	0	2	0	0,162	0,851
_	Dentro de grupos	0,043	32	0,001	•	*
	Total	0,043	34	×		
FR MD	Entre grupos	0,006	2	0,003	1,52	0,234
-11_11111	Dentro de grupos	0,066	32	0,002	-,	-,
	Total	0,072	34	0,002		
AI	Entre grupos	27,904	2,000	13,952	3,904	0,03**
AI.	Dentro de grupos	114,368	32,000	3,574	3,707	0,03
				3,314		
Nivelec de	Total confianza: *90%, **95%, *	142,271 **99%	34,000			
		FICHA DE ANALISIS I				
Recorte Te	rritorial: 1 kilometro		Número de 0	Casos: 38		Año:2022
		U	so de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad					
N	Metricas del Paisaje		ogorov-Smir		Distribución	Distribución
		Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,127	19	$,200^{1}$	X	
2	NP	0,195	19	0,057	X	
3	PD	0,195	19	0,056	X	
4	LPI	0,134	19	$,200^{1}$	X	
5	LSI	0,12	19	$,200^{1}$	X	
6	A_MN	0,1	19	$,200^{1}$	X	
7	SH_MN	0,12	19	$,200^{1}$	X	

8	SH_MD	0,106	19	$,200^{1}$	X	
9	FR MN	0,146	19	$,200^{1}$	X	
10	FR_MD	0,143	19	,2001	X	
	_	0,307	19	<.001***	71	X
11	ENN_MN	<i>'</i>		,		Λ
12	AI	0,187	19	0,078	X	
¹ Esto es u 19 Casos	un límite inferior de la sig pérdidos	nificación verdadera.				
Prueba de	Kruskal-Wallis para mu	estras independientes				
Hipótesis				Sig.	Decisión	
No hay di	iferencias en ENN_MN e	ntre categorías de EJE.		0,021**	Rechace la hip	ótesis nula.
Prueba F	para muestras con distrib	ución normal			•	
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
PLAND	Entre grupos	3947,609	2	1973,804	15,66	<,001***
	Dentro de grupos	4411,322	35	126,038		
	Total	8358,931	37			
NP	Entre grupos	130,554	2	65,277	6,228	0,005***
	Dentro de grupos	366,841	35	10,481		
	Total	497,395	37			
PD	Entre grupos	130,063	2	65,032	6,229	0,005***
	Dentro de grupos	365,393	35	10,44		
	Total	495,456	37			
LPI	Entre grupos	2906,236	2	1453,118	12,561	<,001***
	Dentro de grupos	4048,862	35	115,682		
	Total	6955,098	37			
LSI	Entre grupos	10,677	2	5,339	5,503	0,008***
	Dentro de grupos	33,957	35	0,97		
	Total	44,634	37			
A_MN	Entre grupos	480,254	2	240,127	1,899	0,165
	Dentro de grupos	4426,07	35	126,459		
	Total	4906,324	37			
SH_MN	Entre grupos	0,178	2	0,089	0,75	0,48
	Dentro de grupos	4,143	35	0,118		
	Total	4,321	37			
SH_MD	Entre grupos	0,792	2	0,396	2,702	0,081*
	Dentro de grupos	5,127	35	0,146		
	Total	5,918	37			
FR_MN	Entre grupos	0,002	2	0,001	0,843	0,439
	Dentro de grupos	0,044	35	0,001		
	Total	0,046	37			
FR_MD	Entre grupos	0,005	2	0,002	1,441	0,25
	Dentro de grupos	0,056	35	0,002		
	Total	0,061	37	0.40	0.50	
AI	Entre grupos	0,26	2	0,13	0,687	0,51
	Dentro de grupos	6,624	35	0,189		
	Total	6,884 9%	37			

		FICHA DE ANALISIS	ESTADISTÍC	COS-DIFERENCIAS		
Recorte T	Cerritorial: 1 kilometro		Número de C	Casos: 38		Año:2022
		Ţ	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas d	le normalidad					
1	Metricas del Paisaje	Koln Estadístico	nogorov-Smir gl	nov Sig.	Distribución Normal	Distribución Libre
1	PLAND	0,291	32	<,001***		X
2	NP	0,157	32	0,043**		X
3	PD	0,156	32	0,046**		X
4	LPI	0,315	32	<,001***		X
5	LSI	0,145	32	0,087	X	
6	A_MN	0,272	32	<,001***		X

7	SH_MN	0,107	32	$,200^{1}$	X		
8	SH_MD	0,15	32	0,063	X		
9	FR_MN	0,156	32	0,046		X	
10	FR_MD	0,124	32	$,200^{1}$	X		
11	ENN_MN	0,183	32	0,008***		X	
12	AI	0,181	32	0,009***		X	
Esto es u	n límite inferior de la sign	ificación verdadera.					
Casos pé	rdidos						
rueba de	Kruskal-Wallis para mues	tras independientes					
Hipótesis 1	ıula			Sig.	Decisión		
No hay dif	erencias en PLAND entre	categorías de EJE.		0,969	Conserve la hip	oótesis nula.	
No hay dif	erencias en NP entre cate	gorías de EJE.		0,274	Conserve la hip	ótesis nula.	
No hay dif	erencias en PD entre cate	gorías de EJE.		0,287	Conserve la hip	ótesis nula.	
No hay diferencias en LPI entre categorías de EJE. 0,935 Conserve la hipótesis nu						ótesis nula.	
No hay diferencias en A_MN entre categorías de EJE. 0,912 Cor						Conserve la hipótesis nula.	
No hay dif	o hay diferencias en FR_MN entre categorías de EJE. 0,264 Conserve la hipótesis nu						
No hay dif	erencias en ENN_MN ent	re categorías de EJE.		0,579	Conserve la hij	ótesis nula.	
No hay dif	erencias en AI entre categ	orías de EJE.		0,666	Conserve la hij	ótesis nula.	
Prueba F p	ara muestras con distribu						
		Suma de cuadrados	gl	Media cuadrática	F	Sig.	
LSI	Entre grupos	9,352	2	4,676	2,263	0,121	
	Dentro de grupos	64,054	31	2,066			
	Total	73,407	33				
SH_MN	Entre grupos	0,069	2	0,035	0,689	0,509	
SH_MN	Dentro de grupos	1,554	31	0,05			
		1,623	33				
	Total	-,					
SH_MD	Total Entre grupos	0,277	2	0,139	2,012	0,151	
SH_MD			2 31	0,139 0,069	2,012	0,151	
SH_MD	Entre grupos	0,277	_	,	2,012	0,151	
	Entre grupos Dentro de grupos	0,277 2,137	31	,	2,012 3,113	0,151	
SH_MD FR_MD	Entre grupos Dentro de grupos Total	0,277 2,137 2,414	31	0,069			

]	FICHA DE ANALISIS	ESTADISTÍC	OS-DIFERENCIAS		
Recorte Territorial: 1 kilometro Número de Casos: 38						
		Ţ	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad					
M	letricas del Paisaje	Kolmogorov-Smirnov			Distribución	Distribución
	terreus der ransage	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,208	38	<,001***		X
2	NP	0,137	38	0,071	X	
3	PD	0,136	38	0,075	X	
4	LPI	0,261	38	<,001***		X
5	LSI	0,14	38	0,058	X	
6	A_MN	0,269	38	<,001***		X

7	SH_MN	0,18	38	0,003***		X
8	SH_MD	0,137	38	0,071	X	
9	FR_MN	0,092	38	$,200^{1}$	X	
10	FR_MD	0,075	38	$,200^{1}$	X	
11	ENN_MN	0,27	38	<,001***		X
12	AI	0,177	38	0,004***		X
¹ Esto e	s un límite inferior de la	significación verdadera.				
0 Casos	pérdidos					
Prueba	de Kruskal-Wallis para n	nuestras independientes				
Hipótes	is nula			Sig.	Decisión	
No hay	diferencias en PLAND e	ntre categorías de EJE.		0,093*	Rechace la hipóte	sis nula.
No hay	diferencias en LPI entre	categorías de EJE.		0,063*	Rechace la hipóte	sis nula.
No hay	diferencias en A_MN en	tre categorías de EJE.		0,175	Conserve la hipót	esis nula.
No hay	diferencias en SH_MN e	entre categorías de EJE.		0,917	Conserve la hipótesis nula.	

No hay diferencias en ENN MN entre categorías de EJE. 0,424 Conserve la hipótesis nula. No hay diferencias en AI entre categorías de EJE 0,142 Conserve la hipótesis nula. Prueba F para muestras con distribución normal Suma de cuadrados Media cuadrática Sig. gl NP Entre grupos 263,911 2 131,956 0,593 0,558 Dentro de grupos 7784,431 35 222,412 Total 8048,342 37 PD 2 131,496 0,594 0,558 Entre grupos 262,993 Dentro de grupos 35 221,499 7752,468 Total 37 8015,46 LSI 2 2,849 0,72 0,494 Entre grupos 5,697 35 3,957 Dentro de grupos 138,504 Total 144,202 37 SH MD Entre grupos 0,022 2 0,011 0,304 0,74 Dentro de grupos 1,279 35 0,037 Total 1,301 37 FR MN Entre grupos 0,001 2 0 0,636 0,535 Dentro de grupos 0,017 35 0 Total 0,017 37 FR_MD 2 0,001 0,8 0,457 Entre grupos 0,002 0,05 35 0,001 Dentro de grupos Total 0,053 37

Niveles de confianza: *90%, **95%, ***99%

FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS Año:2022 Recorte Territorial: 1 kilometro Número de Casos: 38 Uso de Suelo Suelo Bosque Vegetación Inundable Cuerpo de Agua Cultivos Pastos y Abustos Construcción Descubierto Pruebas de normalidad Kolmogorov-Smirnov Distribución Distribución Metricas del Paisaje Normal Libre Estadístico gl Sig. <,001*** **PLAND** 31 X 0,232 NP 2 0,145 31 0,096 Χ 3 PD 0,145 31 0,096 X 4 LPI 0,222 31 <,001*** X 5 LSI 0,127 31 $,200^{1}$ Χ 6 <,001*** A MN 0,264 31 X 7 SH_MN 0,045** 0,159 31 X SH_MD 0,103 31 $,200^{1}$ Χ

9	FR_MN	0,133	31	0,172	X	
10	FR_MD	0,097	31	,2001	X	
11	ENN MN	0,321	31	<,001***		X
12	AI	0,121	31	$,200^{1}$	X	
1 Esto es ur	n límite inferior de la signifi	cación verdadera.				
7 Casos péi						
Prueba de I	Kruskal-Wallis para muestra	as independientes				
Hipótesis n	ula			Sig.	Decisión	
No hay dife	erencias en PLAND entre ca	ategorías de EJE.		0,041**	Rechace la hipóte	esis nula.
No hay dife	erencias en LPI entre catego	orías de EJE.		0,062*	Rechace la hipóte	esis nula.
	erencias en A_MN entre cat	-		0,156	Conserve la hipó	
-	erencias en SH_MN entre c	-		0,106	Conserve la hipó	
	erencias en ENN MN entre			0,156	Conserve la hipó	tesis nula.
Prueba F pa	ara muestras con distribució					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	424,185	2	212,092	1,402	0,261
	Dentro de grupos	4840,501	32	151,266		
- DD	Total	5264,686	34	211.150	1.400	0.261
PD	Entre grupos	422,358	2	211,179	1,402	0,261
	Dentro de grupos	4821,251	32	150,664		
I CI	Total	5243,609	34	(212	1.567	0.224
LSI	Entre grupos	12,624	2	6,312	1,567	0,224
	Dentro de grupos Total	128,914 141,538	32 34	4,029		
SH MD	Entre grupos	0,029	2	0,014	0,269	0,766
SII_NID	Dentro de grupos	1,698	32	0,053	0,209	0,700
	Total	1,726	34	0,033		
FR MN	Entre grupos	0,003	2	0,001	1,37	0,269
T K_IVIIV	Dentro de grupos	0,034	32	0,001	1,57	0,20)
	Total	0,037	34	0,001		
FR MD	Entre grupos	0,002	2	0,001	0,428	0,655
	Dentro de grupos	0,069	32	0,002	*, *	*,***
	Total	0,071	34	.,		
AI	Entre grupos	5,005	2	2,502	0,702	0,503
	Dentro de grupos	114,087	32	3,565	ŕ	ŕ
	Total	119,092	34			
	confianza: *90%, **95%, *	FICHA DE ANALISIS	S ESTADISTÍO	COS-DIFERENCIAS	5	
Recorte Te	rritorial: 1 kilometro		Número de O	Casos: 38		Año:2022
			Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad	<u> </u>	~ :			
	115		mogorov-Smir		Distribución	Distribución
	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,205	25	0,008***		X
2	NP	0,258	25	<,001***		X
3	PD	0,258	25	<,001***		X
4	LPI	0,205	25	0,008***		X
5	LSI	0,209	25	0,006***		X
6	A MN	0,231	25	0,001***		X
7	SH_MN	0,133	25	,200¹	X	
8	SH_MD	0,152	25	0,137	X	
· ·	PII_IMID	0,132	23	0,137	Λ	

9	FR_MN	0,177	25	0,042**		X
10	FR_MD	0,129	25	,2001	X	
11	ENN_MN	0,271	25	<,001***		X
12	AI	0,205	25	0,008***		X
¹ Esto es ur	n límite inferior de la sigr	nificación verdadera.				
13 Casos p	oérdidos					
Prueba de	Kruskal-Wallis para mue	stras independientes				
Hipótesis r	nula			Sig.	Decisión	
No hay dif	erencias en PLAND entre	e categorías de EJE.		0,017**	Rechace la h	ipótesis nula.
No hay dif	erencias en NP entre cate	egorías de EJE.		0,752	Conserve la l	nipótesis nula.
No hay dif	erencias en PD entre cate	gorías de EJE.	0,699	Conserve la l	nipótesis nula.	
No hay dif	erencias en LPI entre cat	egorías de EJE.	0,024**	Rechace la hipótesis nula.		
No hay dif	erencias en LSI entre cat	egorías de EJE.	0,064	Conserve la l	nipótesis nula.	
No hay dif	erencias en A_MN entre	categorías de EJE.	0,033**	Rechace la hi	ipótesis nula.	
No hay dif	erencias en FR_MN entre	e categorías de EJE.		0,464	Conserve la l	nipótesis nula.
No hay dif	erencias en ENN_MN en	tre categorías de EJE.		0,507	Conserve la l	nipótesis nula.
No hay dif	erencias en AI entre cate	gorías de EJE.		0,033**	Rechace la hi	ipótesis nula.
Prueba F p	ara muestras con distribu	ción normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SH_MN	Entre grupos	0,391	2	0,196	1,727	0,195
	Dentro de grupos	3,512	31	0,113		
	Total	3,903	33			
SH_MD	Entre grupos	0,339	2	0,169	1,441	0,252
	Dentro de grupos	3,642	31	0,117		
	Total	3,981	33			
FR_MD	Entre grupos	0,003	2	0,002	1,371	0,269
	Dentro de grupos	0,035	31	0,001		
	Total	0.038	33			

Grupo 2.3. RT2 (1 km) - Análisis estadístico de diferencias entre los años 2020 y 2022

	FI	CHA DE ANALISIS I	ESTADISTÍCO	S-DIFERENCIAS		
Recorte To	erritorial: 1 kilometro		Número de Ca	asos: 76		Año:2020 - 2022
		U	so de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	e normalidad	Ко	lmogorov-Smir	nov	Distribución	Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,165	70	<,001***		X
2	NP	0,135	70	0,003***		X
3	PD	0,135	70	0,003***		X
4	LPI	0,133	70	0,004***		X
5	LSI	0,099	70	0,083	X	
6	A_MN	0,249	70	<,001***		X

0,085 0,131	70 70	,200¹ 0,004***	X	v
0,131	70	0.004***		v
		- ,		X
0,104	70	0,057	X	
0,193	70	<,001***		X
0,289	70	<,001***		X
)	0,193 0,289	0,193 70	0,193 70 <,001*** 0,289 70 <,001***	0,193 70 <,001*** 0,289 70 <,001***

Hipótesis nula	Sig.	Decisión
No hay diferencias en PLAND entre categorías de YEAR.	0,034**	Rechace la hipótesis nula.
No hay diferencias en NP entre categorías de YEAR.	0,032**	Rechace la hipótesis nula.
No hay diferencias en PD entre categorías de YEAR.	0,035**	Rechace la hipótesis nula.
No hay diferencias en LPI entre categorías de YEAR.	0,068*	Conserve la hipótesis nula.
No hay diferencias en A_MN entre categorías de YEAR.	0,525	Conserve la hipótesis nula.
No hay diferencias en SH_MN entre categorías de YEAR.	0,252	Conserve la hipótesis nula.
No hay diferencias en FR_MN entre categorías de YEAR.	0,087*	Conserve la hipótesis nula.
No hay diferencias en ENN_MN entre categorías de YEAR.	0,053**	Conserve la hipótesis nula.
No hay diferencias en AI entre categorías de YEAR.	0,735	Conserve la hipótesis nula.
B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1		

No nay di	terencias en Al entre categorias	de LEAR.		0,733	Conserve la	mpotesis nuia.
Prueba F	para muestras con distribución r	normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	4,814	1	4,814	3,637	0,06*
	Dentro de grupos	96,637	73	1,324		
	Total	101,451	74			
SH_MD	Entre grupos	0,342	1	0,342	4,486	0,038**
	Dentro de grupos	5,569	73	0,076		
	Total	5,911	74			
FR_MD	Entre grupos	0,01	1	0,01	3,543	0,064*
	Dentro de grupos	0,205	73	0,003		
	Total	0,215	74			

Niveles de confianza: *90%, **95%, ***99%

	H	TICHA DE ANALISIS	ESTADISTÍC	COS-DIFERENCIAS			
Recorte Territorial: 1 kilometro Número de Casos: 76 Añ							
		Ţ	Jso de Suelo				
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción	

		Kolmogorov-Smirnov				Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Distribución Normal	Libre
1	PLAND	0,243	60	<,001***		X
2	NP	0,135	60	0,008***		X
3	PD	0,135	60	0,008***		X
4	LPI	0,291	60	<,001***		X
5	LSI	0,069	60	$,200^{1}$	X	
5	A_MN	0,348	60	<,001***		X
7	SH_MN	0,112	60	0,057	X	
3	SH_MD	0,236	60	<,001***		X
)	FR_MN	0,114	60	0,051	X	
10	FR MD	0,194	60	<,001***		X

11	ENN_MN	0,356	60	<,001***		X
12	AI	0,099	60	,2001	X	
1 Esto es u	n límite inferior de la sign	nificación verdadera.				
16 Casos p						
Prueba de	Kruskal-Wallis para mue	stras independientes				
Hipótesis 1	nula			Sig.	Decisión	
No hay dif	erencias en PLAND entr	e categorías de YEAR.		0,067*	Conserve la l	hipótesis nula.
No hay dif	erencias en NP entre cate	egorías de YEAR.		0,224	Conserve la l	hipótesis nula.
No hay dif	erencias en PD entre cate	egorías de YEAR.		0,227	Conserve la l	hipótesis nula.
No hay dif	erencias en LPI entre cat	egorías de YEAR.		0,014**	Rechace la h	ipótesis nula.
No hay dif	erencias en A_MN entre	categorías de YEAR.		0,002***	Rechace la h	ipótesis nula.
No hay dif	erencias en SH_MD entr	e categorías de YEAR.		<,001***	Rechace la h	ipótesis nula.
No hay dif	erencias en FR_MD entr	e categorías de YEAR.		<,001***	Rechace la h	ipótesis nula.
No hay dif	erencias en ENN_MN en	tre categorías de YEAR.		0,27	Conserve la l	hipótesis nula.
Prueba F p	ara muestras con distribu	ción normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	2,682	1	2,682	0,435	0,512
	Dentro de grupos	394,304	64	6,161		
	Total	396,986	65			
SH_MN	Entre grupos	0,265	1	0,265	5,598	0,021**
	Dentro de grupos	3,03	64	0,047		
	Total	3,295	65			
FR_MN	Entre grupos	0,006	1	0,006	4,588	0,036**
	Dentro de grupos	0,087	64	0,001		
	Total	0,093	65			
AI	Entre grupos	50,824	1	50,824	13,154	<,001***
	Dentro de grupos	247,28	64	3,864		,
	<i>O</i> 1					

)	FICHA DE ANALISIS	ESTADISTÍC	COS-DIFERENCIAS		
Recorte Te	rritorial: 1 kilometro		Número de (Casos: 76		Año:2020 - 2022
		Ţ	Jso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad					
		Kolı	nogorov-Smir	nov	Distribución	Distribución
M	Ietricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,123	36	0,183	X	
2	NP	0,201	36	<,001***		X
3	PD	0,201	36	<,001***		X
4	LPI	0,108	36	,200 ¹	X	
5	LSI	0,139	36	0,078	X	
6	A_MN	0,137	36	0,083	X	
7	SH_MN	0,112	36	,200 ¹	X	
8	SH_MD	0,122	36	0,199	X	
9	FR_MN	0,127	36	0,149	X	
10	FR_MD	0,118	36	$,200^{1}$	X	
11	ENN_MN	0,271	36	<,001***		X
12	AI	0,144	36	0,056	X	
¹ Esto es un	límite inferior de la signific	ación verdadera.			40 Cas	os pérdidos
Prueba de I	Kruskal-Wallis para muestra	s independientes			<u> </u>	

Hipótesis 1	nula			Sig.	Decisión	
No hay dife	erencias en NP entre categorí erencias en PD entre categorí erencias en ENN_MN entre c	as de YEAR.		0,489 0,426 0,812	Conserve la h Conserve la h Conserve la h	ipótesis nula.
	para muestras con distribuci					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
PLAND	Entre grupos	71,741	1	71,741	0,312	0,578
	Dentro de grupos	16792,061	73	230,028		
	Total	16863,802	74			
LPI	Entre grupos	133,803	1	133,803	0,663	0,418
	Dentro de grupos	14722,706	73	201,681		
	Total	14856,509	74			
LSI	Entre grupos	1,235	1	1,235	1,258	0,266
	Dentro de grupos	71,66	73	0,982		
	Total	72,894	74			
A_MN	Entre grupos	236,812	1	236,812	1,362	0,247
	Dentro de grupos	12696,072	73	173,919		
	Total	12932,885	74			
SH_MN	Entre grupos	0,022	1	0,022	0,169	0,683
	Dentro de grupos	9,43	73	0,129		
	Total	9,452	74			
SH_MD	Entre grupos	0,151	1	0,151	0,904	0,345
	Dentro de grupos	12,226	73	0,167		
	Total	12,378	74			
FR_MN	Entre grupos	0	1	0	0,217	0,643
	Dentro de grupos	0,086	73	0,001		
	Total	0,086	74			
FR_MD	Entre grupos	0,002	1	0,002	1,143	0,289
	Dentro de grupos	0,111	73	0,002		
	Total	0,113	74			
AI	Entre grupos	0,429	1	0,429	3,706	0,058*
	Dentro de grupos	8,456	73	0,116		
	Total	8,885	74			

		FICHA DE ANALISIS	S ESTADISTÍ	COS-DIFERENCIAS		
Recorte	e Territorial: 1 kilometro		Número de C	Casos: 76		Año:2020 - 2022
			Uso de Suelo	_		
Boso	que Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Prueba	s de normalidad					
		Kol	mogorov-Smir	nov	Distribución	Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,252	68	<,001***		X
2	NP	0,189	68	<,001***		X
3	PD	0,189	68	<,001***		X
4	LPI	0,308	68	<,001***		X
5	LSI	0,116	68	0,023**		X
6	A_MN	0,276	68	<,001***		X
7	SH_MN	0,092	68	,200 ¹	X	
8	SH_MD	0,123	68	0,012**		X
9	FR_MN	0,135	68	0,004***		X
10	FR_MD	0,077	68	,2001	X	

68

68

0,216

0,129

<,001***

0,007***

11

ENN_MN

ΑI

X

Prueba de l	Kruskal-Wallis para mue	stras independientes				
Hipótesis r	-	stras macponaromes		Sig.	Decisión	
	erencias en PLAND entre	e categorías de VEAR		0,654		hipótesis nula.
•	erencias en NP entre cate	e		<.001***		ipótesis nula.
•	erencias en PD entre cate	~		<.001***		ipótesis nula.
•	erencias en LPI entre cate	~		0,845		hipótesis nula.
•	erencias en LSI entre cate	Č		0.004***		ipótesis nula.
•	erencias en A MN entre			0,061*		hipótesis nula.
•	erencias en SH MD entre	•		0,384		hipótesis nula.
No hay dif	erencias en FR_MN entre	e categorías de YEAR.		0,553	Conserve la	hipótesis nula.
-	erencias en ENN_MN en	-		0,102	Conserve la	hipótesis nula.
No hay dif	erencias en AI entre cates	gorías de YEAR.		0,186	Conserve la	hipótesis nula.
Prueba F p	ara muestras con distribu	ción normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SH_MN	Entre grupos	0,201	1	0,201	4,764	0,032**
	Dentro de grupos	2,91	69	0,042		
	Total	3,111	70			
FR_MD	Entre grupos	0,003	1	0,003	1,319	0,255
	Dentro de grupos	0,153	69	0,002		
	Total	0,156	70			
Nivolos do	confianza: *90%, **95%	5. ***99%				

		FICHA DE ANALISIS	ESTADISTÍC	COS-DIFERENCIAS		
Recorte T	erritorial: 1 kilometro		Número de (Casos: 76		Año:2020 - 2022
		1	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas d	e normalidad					
		Kol	mogorov-Smir	rnov	Distribución	Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,242	74	<,001***		X
2	NP	0,136	74	0,002***		X
3	PD	0,135	74	0,002***		X
4	LPI	0,27	74	<,001***		X
5	LSI	0,105	74	0,041**		X
6	A_MN	0,307	74	<,001***		X
7	SH_MN	0,084	74	$,200^{1}$	X	
8	SH_MD	0,084	74	,2001	X	
9	FR_MN	0,067	74	,2001	X	
10	FR_MD	0,06	74	,2001	X	
11	ENN_MN	0,291	74	<,001***		X
12	AI	0,129	74	0,004***		X

Prueba de I	Kruskal-Wallis para muestra:	s independientes				
Hipótesis n	ula			Sig.	Decisión	
No hay dife	erencias en PLAND entre ca	tegorías de YEAR.		0,003***	Rechace la hipót	esis nula.
-	erencias en NP entre categor	_		0,944	Conserve la hipó	
No hay dife	erencias en PD entre categor	ías de YEAR.		0,944	Conserve la hipó	tesis nula.
No hay dife	erencias en LPI entre categor	rías de YEAR.		0,021**	Rechace la hipót	esis nula.
No hay dife	erencias en LSI entre categor	rías de YEAR.		0,611	Conserve la hipó	tesis nula.
No hay dife	erencias en A_MN entre cate	gorías de YEAR.		0,033**	Rechace la hipót	esis nula.
No hay dife	erencias en ENN_MN entre	categorías de YEAR.		0,256	Conserve la hipó	tesis nula.
No hay dife	erencias en AI entre categorí	as de YEAR.		0,105	Conserve la hipó	tesis nula.
Prueba F pa	ara muestras con distribución	n normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SH_MN	Entre grupos	0,098	1	0,098	3,212	0,077*
	Dentro de grupos	2,19	72	0,03		
	Total	2,288	73			
SH_MD	Entre grupos	0,089	1	0,089	3,257	0,075*
	Dentro de grupos	1,968	72	0,027		
	Total	2,057	73			
FR_MN	Entre grupos	0	1	0	0,635	0,428
	Dentro de grupos	0,049	72	0,001		
	Total	0,049	73			
FR_MD	Entre grupos	0,003	1	0,003	2,141	0,148
	Dentro de grupos	0,097	72	0,001		
	Total	0,099	73			
Niveles de	confianza: *90%, **95%, **		73			
Niveles de	confianza: *90%, **95%, **	**99%		COS.DIFFRENCIAS		
	confianza: *90%, **95%, **					Año:2020 - 20
	confianza: *90%, **95%, **	**99% FICHA DE ANALISIS	S ESTADISTÍO			Año:2020 - 20
	confianza: *90%, **95%, **	**99% FICHA DE ANALISIS	ESTADISTÍO		Suelo Descubierto	
Recorte Te Bosque	confianza: *90%, **95%, ** rritorial: 1 kilometro	**99% FICHA DE ANALISIS	S ESTADISTÍO Número de Uso de Suelo	Casos: 76	Suelo	
Recorte Te Bosque	confianza: *90%, **95%, ** rritorial: 1 kilometro Vegetación Inundable	FICHA DE ANALISIS Cuerpo de Agua	S ESTADISTÍO Número de Uso de Suelo	Casos: 76 Pastos y Abustos	Suelo	Construcción
Recorte Te Bosque Pruebas de	confianza: *90%, **95%, ** rritorial: 1 kilometro Vegetación Inundable	FICHA DE ANALISIS Cuerpo de Agua	Número de Número de Uso de Suelo Cultivos	Casos: 76 Pastos y Abustos	Suelo Descubierto	Construcción
Recorte Te Bosque Pruebas de	confianza: *90%, **95%, ** rritorial: 1 kilometro Vegetación Inundable normalidad	FICHA DE ANALISIS Cuerpo de Agua	Número de Uso de Suelo Cultivos mogorov-Smir	Pastos y Abustos	Suelo Descubierto Distribución	Construcción
Recorte Te Bosque Pruebas de	confianza: *90%, **95%, ** rritorial: 1 kilometro Vegetación Inundable normalidad fetricas del Paisaje	Cuerpo de Agua Kol Estadístico	Número de O Número de O Uso de Suelo Cultivos Omogorov-Smin	Pastos y Abustos rnov Sig.	Suelo Descubierto Distribución	Construcción Distribución Libre
Bosque Pruebas de M	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND	Cuerpo de Agua Kol Estadístico 0,19	Número de la Viso de Suelo Cultivos mogorov-Smir gl 62	Pastos y Abustos Prov Sig. <,001***	Suelo Descubierto Distribución	Construcció Distribución Libre X
Bosque Pruebas de M 1 2	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP	Cuerpo de Agua Kol Estadístico 0,19 0,158	Número de Uso de Suelo Cultivos mogorov-Smin gl 62 62	Pastos y Abustos rnov Sig. <,001*** <,001***	Suelo Descubierto Distribución	Distribución Libre X X
Bosque Pruebas de M 1 2 3 4	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD	Cuerpo de Agua Kol Estadístico 0,19 0,158 0,158	Número de Vuso de Suelo Cultivos mogorov-Smir gl 62 62 62	Pastos y Abustos Prov Sig. <,001*** <,001***	Suelo Descubierto Distribución	Distribución Libre X X X
Bosque Pruebas de M 1 2 3 4	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD LPI	**99% Cuerpo de Agua Kol Estadístico 0,19 0,158 0,158 0,243	Número de Vuso de Suelo Cultivos mogorov-Smin gl 62 62 62 62 62	Pastos y Abustos Prov Sig. <,001*** <,001*** <,001***	Suelo Descubierto Distribución Normal	Distribución Libre X X X
Bosque Pruebas de M 1 2 3 4 5 6	rritorial: 1 kilometro Vegetación Inundable normalidad fetricas del Paisaje PLAND NP PD LPI LSI	**99% Cuerpo de Agua Kol Estadístico 0,19 0,158 0,158 0,243 0,095	Número de Uso de Suelo Cultivos mogorov-Smin gl 62 62 62 62 62 62	Pastos y Abustos Prov Sig. <,001*** <,001*** <,001*** <,001*** <,001***	Suelo Descubierto Distribución Normal	Distribución Libre X X X
Bosque Pruebas de M 1 2 3 4 5 6 7	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD LPI LSI A_MN	**99% Cuerpo de Agua Kol Estadístico 0,19 0,158 0,158 0,243 0,095 0,287	Múmero de Uso de Suelo Cultivos mogorov-Smin gl 62 62 62 62 62 62 62	Pastos y Abustos rnov Sig. <,001*** <,001*** <,001*** <,001*** <,001*** <,001***	Suelo Descubierto Distribución Normal	Distribución Libre X X X X
Recorte Te Bosque Pruebas de M 1 2 3 4 5 6 7	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD LPI LSI A_MN SH_MN	Kol Estadístico 0,19 0,158 0,158 0,243 0,095 0,287 0,142	Múmero de la Número de la Número de la Viso de Suelo Cultivos mogorov-Smin gl 62 62 62 62 62 62 62 62 62 62 62 62 62	Pastos y Abustos Prov Sig. <,001*** <,001*** <,001*** <,001*** <,001*** 0,003***	Suelo Descubierto Distribución Normal	Distribución Libre X X X X
Recorte Te Bosque Pruebas de M	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD LPI LSI A_MN SH_MN SH_MD	**99% Cuerpo de Agua Kol Estadístico 0,19 0,158 0,158 0,243 0,095 0,287 0,142 0,169	Número de Núme	Pastos y Abustos Frnov Sig. <,001*** <,001*** <,001*** <,001*** <,001*** <,001*** <,001*** <,001*** <,001***	Suelo Descubierto Distribución Normal	Distribución Libre X X X X
Bosque Pruebas de M 1 2 3 4 5 6 7 8 9	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD LPI LSI A_MN SH_MN SH_MN SH_MD FR_MN	**99% Cuerpo de Agua Kol Estadístico 0,19 0,158 0,158 0,243 0,095 0,287 0,142 0,169 0,089	Número de Número de Número de Número de Número de Uso de Suelo Cultivos	Pastos y Abustos Pastos y Abustos Prov Sig. <,001*** <,001*** <,001*** <,001*** <,001*** <,001*** 0,003*** <,001*** ,200¹	Suelo Descubierto Distribución Normal	Distribución Libre X X X X X

Prueba de I	Kruskal-Wallis para muestra	as independientes				
Hipótesis n	nula			Sig.	Decisión	
No hay dife	erencias en PLAND entre ca	ategorías de YEAR.		0,421	Conserve la hipó	tesis nula.
No hay dife	erencias en NP entre catego	rías de YEAR.		0,151	Conserve la hipó	tesis nula.
No hay dife	erencias en PD entre catego	rías de YEAR.		0,153	Conserve la hipó	tesis nula.
No hay dife	erencias en LPI entre catego	orías de YEAR.		0,155	Conserve la hipó	tesis nula.
No hay dife	erencias en A_MN entre cat	egorías de YEAR.		0,02**	Rechace la hipót	esis nula.
No hay dife	erencias en SH_MN entre ca	ategorías de YEAR.		0,005***	Rechace la hipót	esis nula.
No hay dife	erencias en SH_MD entre ca	ategorías de YEAR.		0,005***	Rechace la hipót	esis nula.
No hay dife	erencias en FR_MD entre ca	ategorías de YEAR.		0,006***	Rechace la hipót	esis nula.
No hay dife	erencias en ENN_MN entre	categorías de YEAR.		0,402	Conserve la hipó	tesis nula.
Prueba F pa	ara muestras con distribució	on normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	9,791	1	9,791	1,707	0,196
	Dentro de grupos	384,394	67	5,737		
	Total	394,185	68			
FR_MN	Entre grupos	0,005	1	0,005	5,938	0,017**
	Dentro de grupos	0,062	67	0,001		
	Total	0,067	68			
		12.569	1	13,568	3,835	0,054*
ΑI	Entre grupos	13,568	•			
AI	Entre grupos Dentro de grupos	237,022	67	3,538		,
	Dentro de grupos Total confianza: *90%, **95%, *	237,022 250,59 ***99%	67 68	·		,
Niveles de	Dentro de grupos Total confianza: *90%, **95%, *	237,022 250,59 ***99% FICHA DE ANALISIS	67 68 S ESTADISTÍ	COS-DIFERENCIAS	5	Año:2020 - 2
	Dentro de grupos Total confianza: *90%, **95%, *	237,022 250,59 ***99% FICHA DE ANALISIS	67 68 68 6 ESTADISTÍ	COS-DIFERENCIAS		Año:2020 - 2
Niveles de	Dentro de grupos Total confianza: *90%, **95%, *	237,022 250,59 ***99% FICHA DE ANALISIS	67 68 S ESTADISTÍ	COS-DIFERENCIAS	Suelo Descubierto	
Niveles de Recorte Te Bosque	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable	237,022 250,59 ***99% FICHA DE ANALISIS	67 68 SESTADISTÍ Número de O Uso de Suelo	COS-DIFERENCIAS Casos: 76	Suelo	
Niveles de Recorte Te Bosque	Dentro de grupos Total confianza: *90%, **95%, *	237,022 250,59 ***99% FICHA DE ANALISIS	67 68 SESTADISTÍ Número de O Uso de Suelo Cultivos	COS-DIFERENCIAS Casos: 76 Pastos y Abustos	Suelo Descubierto	Construccie
Niveles de Recorte Te Bosque	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable	237,022 250,59 ***99% FICHA DE ANALISIS	67 68 SESTADISTÍ Número de O Uso de Suelo	COS-DIFERENCIAS Casos: 76 Pastos y Abustos	Suelo	Construccie
Niveles de Recorte Te Bosque Pruebas de	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua	67 68 68 6 ESTADISTÍ Número de O Uso de Suelo Cultivos	COS-DIFERENCIAS Casos: 76 Pastos y Abustos	Suelo Descubierto	Construcció
Niveles de Recorte Te Bosque Pruebas de	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico	67 68 SESTADISTÍ Número de O Uso de Suelo Cultivos mogorov-Smir gl	Cos-diferencias Casos: 76 Pastos y Abustos Pastos y Sig.	Suelo Descubierto	Construcció Distribució Libre
Niveles de Recorte Te Bosque Pruebas de M	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187	67 68 SESTADISTÍ Número de G Uso de Suelo Cultivos mogorov-Smir gl 44	COS-DIFERENCIAS Casos: 76 Pastos y Abustos rnov Sig. <,001***	Suelo Descubierto	Construcció Distribució Libre X
Recorte Te Bosque Pruebas de M 1 2	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266	67 68 SESTADISTÍ Número de C Uso de Suelo Cultivos mogorov-Smir gl 44 44	Cos-DIFERENCIAS Casos: 76 Pastos y Abustos Phov Sig. <,001*** <,001***	Suelo Descubierto	Distribució Libre X X
Niveles de Recorte Te Bosque Pruebas de M 1 2 3 4	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266 0,265	67 68 SESTADISTÍ Número de G Uso de Suelo Cultivos mogorov-Smir gl 44 44 44	Casos: 76 Pastos y Abustos Phov Sig. <.001*** <.001***	Suelo Descubierto	Distribució Libre X X X
Niveles de Recorte Te Bosque Pruebas de M	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD LPI	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266 0,265 0,19	67 68 SESTADISTÍ Número de C Uso de Suelo Cultivos mogorov-Smir gl 44 44 44 44	Pastos y Abustos Pastos y Abustos Poov Sig. <,001*** <,001*** <,001***	Suelo Descubierto	Distribució Libre X X X
Recorte Te Bosque Pruebas de M	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD LPI LSI	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koln Estadístico 0,187 0,266 0,265 0,19 0,184	67 68 SESTADISTÍ Número de G Uso de Suelo Cultivos mogorov-Smir gl 44 44 44 44 44	Pastos y Abustos Pastos y Abustos Pastos y Abustos Sig. <.001*** <.001*** <.001*** <.001***	Suelo Descubierto	Distribució Libre X X X X
Niveles de Recorte Te Bosque Pruebas de M 1 2 3 4 5 6 7	Dentro de grupos Total confianza: *90%, **95%, * rritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD LPI LSI A_MN	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266 0,265 0,19 0,184 0,215	67 68 SESTADISTÍ Número de C Uso de Suelo Cultivos mogorov-Smir gl 44 44 44 44 44 44	COS-DIFERENCIAS Casos: 76 Pastos y Abustos Chov Sig. <,001*** <,001*** <,001*** <,001*** <,001*** <,001***	Suelo Descubierto	Distribució Libre X X X X X
Recorte Te Bosque Pruebas de M 1 2 3 4 5 6 7 8	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD LPI LSI A_MN SH_MN	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266 0,265 0,19 0,184 0,215 0,188	67 68 SESTADISTÍ Número de O Uso de Suelo Cultivos mogorov-Smir gl 44 44 44 44 44 44 44	Casos: 76 Pastos y Abustos Pastos y Abustos Pastos y Abustos Casos: 76 Pastos y Abustos Casos: 76 Pastos y Abustos	Suelo Descubierto	Distribució Libre X X X X X X
Pruebas de M 1 2 3 4 5 6 7 8	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD LPI LSI A_MN SH_MN SH_MN	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266 0,265 0,19 0,184 0,215 0,188 0,177	67 68 SESTADISTÍ Número de C Uso de Suelo Cultivos mogorov-Smir gl 44 44 44 44 44 44 44 44 44	Pastos y Abustos Pastos y Abustos Sig. <001*** <001*** <001*** <001*** <001*** <001*** <001*** <001*** <001***	Suelo Descubierto	Distribució Libre X X X X X X X
Niveles de Recorte Te Bosque Pruebas de	Dentro de grupos Total confianza: *90%, **95%, * erritorial: 1 kilometro Vegetación Inundable normalidad letricas del Paisaje PLAND NP PD LPI LSI A_MN SH_MN SH_MD FR_MN	237,022 250,59 ***99% FICHA DE ANALISIS Cuerpo de Agua Koli Estadístico 0,187 0,266 0,265 0,19 0,184 0,215 0,188 0,177 0,21	67 68 SESTADISTÍ Número de G Uso de Suelo Cultivos mogorov-Smir gl 44 44 44 44 44 44 44 44 44 44	Pastos y Abustos Pastos y Abustos Pastos y Abustos Sig. <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001*** <.001***	Suelo Descubierto Distribución Normal	Distribució Libre X X X X X X X

Prueba de Kruskal-Wallis pa	ra muestras independientes						
Hipótesis nula			Sig.	De	cisión		
No hay diferencias en PLAN	D entre categorías de YEAR.		0,296	Co	nserve la hipótesis nula.		
No hay diferencias en NP en	No hay diferencias en NP entre categorías de YEAR.				nserve la hipótesis nula.		
No hay diferencias en PD en		0,273	Co	nserve la hipótesis nula.			
No hay diferencias en LPI en		0,276	Co	nserve la hipótesis nula.			
No hay diferencias en LSI en	ntre categorías de YEAR.		0,622	Co	nserve la hipótesis nula.		
No hay diferencias en A_Mî	N entre categorías de YEAR.		0,168	Co	nserve la hipótesis nula.		
No hay diferencias en SH_M		0,653	Co	Conserve la hipótesis nula.			
No hay diferencias en SH_M	ID entre categorías de YEAR.		0,783	Co	Conserve la hipótesis nula.		
No hay diferencias en FR_M	N entre categorías de YEAR.		0,766	Co	Conserve la hipótesis nula.		
No hay diferencias en ENN_	MN entre categorías de YEAR.		0,822	Co	Conserve la hipótesis nula.		
No hay diferencias en AI en	re categorías de YEAR.		0,416	Co	nserve la hipótesis nula.		
Prueba F para muestras con	distribución normal						
	Suma de cuadrados	gl	Media cuadrática	F	Sig.		
FR_MD Entre grupos	0	1		0	0,407	0,526	
Dentro de grup	os 0,067	59	0,0	01			
Total	0,068	60					
Niveles de confianza: *90%	**95%, ***99%						

Grupo 2.4. RT2 (1 km) -Análisis estadístico de diferencias entre 2020 y 2022 en el eje fluvial 1: río Coca.

Recorte Ter	ritorial: 1 kilometro	Núm	nero de Casos: 2	26 (13 por cada año)		Año: 2020 - 2022
			o de Suelo	,		
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad					
		Kol	mogorov-Smir	nov	Distribución	Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,228	23	0,003***		X
2	NP	0,176	23	0,062	X	
3	PD	0,176	23	0,061	X	
4	LPI	0,265	23	<,001***		X
5	LSI	0,072	23	,2001	X	
6	A_MN	0,288	23	<.001***		X
7	SH MN	0,16	23	0,134	X	
8	SH_MD	0,145	23	,2001	X	
9	FR_MN	0,186	23	0,038**		X
10	FR_MD	0,182	23	0,047**		X
11	ENN_MN	0,157	23	0,147	X	
12	AI	0,256	23	<,001***		X
	límite inferior de la significaci	· · · · · · · · · · · · · · · · · · ·	23	5,001		3 Casos pérdidos
	ruskal-Wallis para muestras in					casos perdidos
Hipótesis n		1		Sig.	Decisión	
	rencias en PLAND entre catego	orías de VEAR		0,228	Conserve la hipó	tesis nula
-	rencias en LPI entre categorías			0,277	Conserve la hipó	
-	rencias en A_MN entre categor			0,384	Conserve la hipó	
	rencias en FR_MN entre catego			0,103	Conserve la hipó	
No hay dife	rencias en FR_MD entre catego	orías de YEAR.		0,192	Conserve la hipó	tesis nula.
-	rencias en AI entre categorías o			0,384	Conserve la hipó	tesis nula.
Prueba F pa	ra muestras con distribución no					
	_	Suma de cuadrados	gl		F	Sig.
NP	Entre grupos	65,132	1	65,132	1,224	0,28
	Dentro de grupos Total	1224,308 1289,44	23 24	53,231		
PD	Entre grupos	64,833	1	64,833	1,223	0,28
1 D	Dentro de grupos	1219,378	23	53,016	1,223	0,20
	Total	1284,211	24			
LSI	Entre grupos	0,119	1	0,119	0,083	0,775
	Dentro de grupos	32,96	23	1,433		
	Total	33,08	24			
SH_MN	Entre grupos	0,019	1	0,019	0,626	0,437
	Dentro de grupos	0,712	23	0,031		
CIL MD	Total	0,731	24	0.014	0.250	0.555
SH_MD	Entre grupos Dentro de grupos	0,014 0,906	1 23	0,014 0,039	0,359	0,555
	Total	0,906	23	0,039		
ENN_MN	Entre grupos	59,613	1	59,613	0,012	0,913
	Dentro de grupos	101671,97	21	4841,522	-,	-9
	Total	101731,583	22	·		
NT:1 1-	confianza: *90%, **95%, ***9	9%				

Recorte Terr	ritorial: 1 kilometro	Nú	mero de Casos	: 26 (13 por cada año)		Año: 2020 - 20
			Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
ruebas de r	normalidad					
		Kol	mogorov-Smir	nov	Distribución	Distribución
Ме	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
!	PLAND	0,242	20	0,003***		X
2	NP	0,145	20	$,200^{1}$	X	
	PD	0,145	20	$,200^{1}$	X	
ļ	LPI	0,267	20	<,001***		X
5	LSI	0,155	20	$,200^{1}$	X	
6	A_MN	0,265	20	<,001***		X
7	SH_MN	0,191	20	0,054	X	
3	SH_MD	0,185	20	0,071	X	
)	FR_MN	0,17	20	0,13	X	
10	FR_MD	0,167	20	0,146	X	W
l 1 l 2	ENN_MN	0,358	20	<,001***	v	X
	AI límite inferior de la signifi	0,147	20	,2001	X	
Casos péro	-	cacion verdadera.				
	ruskal-Wallis para muestra	s independientes				
Hipótesis nu	-	is independientes		Sig.	Decisión	
	rencias en PLAND entre ca	stagorios da VEAD		0,086*	Rechace la hipóte	seie nula
-	rencias en LPI entre catego	-		0,075*	Rechace la hipóte	
-	rencias en A_MN entre cat			0,048**	Rechace la hipóte	
-	rencias en ENN_MN entre	-		0,044**	Rechace la hipóte	
	ra muestras con distribució			0,011	Treemace in imperi	
1		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	292,002	1	292,002	0,899	0,354
	Dentro de grupos	6493,817	20	324,691	0,000	0,55 .
	Total	6785,818	21	,		
PD	Entre grupos	290,81	1	290,81	0,899	0,354
	Dentro de grupos	6467,772	20	323,389	,	Ź
	Total	6758,581	21	,		
LSI	Entre grupos	0,233	1	0,233	0,042	0,839
	Dentro de grupos	109,78	20	5,489	ŕ	ŕ
	Total	110,013	21	,		
SH_MN	Entre grupos	0,066	1	0,066	2,201	0,154
_	Dentro de grupos	0,595	20	0,03		
	Total	0,661	21			
SH_MD	Entre grupos	0,241	1	0,241	4,608	0,044**
	Dentro de grupos	1,048	20	0,052		
	Total	1,289	21			
FR_MN	Entre grupos	0,002	1	0,002	6,879	0,016**
	Dentro de grupos	0,006	20	0		
	Total	0,009	21			
FR_MD	Entre grupos	0,014	1	0,014	14,272	0,001***
	Dentro de grupos	0,019	20	0,001		
	Total	0,033	21			
ΑI	Entre grupos	13,561	1	13,561	4,517	0,046**
	Dentro de grupos	60,041	20	3,002		
T. 1 .	Total	73,602	21			
viveles de c	onfianza: *90%, **95%, *	**99%				
		FICHA DE ANALISIS	FCTADICTÍ	COC DIFERENCIA C		
	ritorial: 1 kilometro			: 26 (13 por cada año)		

Bosque	Vegetación Inundable	Cuerpo de Agua	Uso de Suelo Cultivos	Pastos y Abustos	Suelo Descubierto	Construcció
Pruebas de	normalidad					
		Kol	mogorov-Smir	rnov	Distribución	Distribució
N	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,133	19	,200¹	X	
2	NP	0,213	19	0.023**		X
3	PD	0,213	19	0,023**		X
1	LPI	0,128	19	,200¹	X	
5	LSI	0,152	19	,200¹	X	
6		0,152	19	,200¹	X	
	A_MN			·		
7	SH_MN	0,124	19	,2001	X	
8	SH_MD	0,2	19	0,044**		X
9	FR_MN	0,122	19	,2001	X	
10	FR_MD	0,13	19	$,200^{1}$	X	
11	ENN_MN	0,228	19	0,011**		X
12	AI	0,208	19	0,03**		X
Esto es u	n límite inferior de la signific	ación verdadera.			7	Casos pérdidos
Prueba de	Kruskal-Wallis para muestras	s independientes				
Hipótesis r	nula			Sig.	Decisión	
No hay dif	erencias en NP entre categorí	ías de YEAR.		0,488	Conserve la hipóte	esis nula.
No hay dif	erencias en PD entre categorí	ías de YEAR.		0,489	Conserve la hipóte	esis nula.
	erencias en SH_MD entre car			0,355	Conserve la hipóte	
-	erencias en ENN_MN entre o	-		0,806	Conserve la hipóte	
	erencias en AI entre categoría			0,034**	Rechace la hipótes	sis nula.
Prueba F p	ara muestras con distribución	n normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
PLAND	Entre grupos	158,141	1	158,141	1,028	0,321
	Dentro de grupos	3536,669	23	153,768		
	Total	3694,81	24			
	Entre grupos	278,953	1	278,953	2,139	0,157
LPI						
LPI	Dentro de grupos	2999,008	23	130,392		
LPI	Dentro de grupos Total	3277,961	24			
	Dentro de grupos Total Entre grupos	3277,961 1,971	24	1,971	1,9	0,181
	Dentro de grupos Total Entre grupos Dentro de grupos	3277,961 1,971 23,858	24 1 23		1,9	0,181
LSI	Dentro de grupos Total Entre grupos Dentro de grupos Total	3277,961 1,971 23,858 25,829	24 1 23 24	1,971 1,037		
LSI	Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos	3277,961 1,971 23,858 25,829 258,811	24 1 23 24	1,971 1,037 258,811	1,9	0,181
LSI	Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	3277,961 1,971 23,858 25,829 258,811 4190,443	24 1 23 24 1 23	1,971 1,037		
LSI A_MN	Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Total	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254	24 1 23 24 1 23 24	1,971 1,037 258,811 182,193	1,421	0,245
LSI A_MN	Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Total Entre grupos	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015	24 1 23 24 1 23 24 1	1,971 1,037 258,811 182,193		
LSI A_MN	Dentro de grupos Total Entre grupos Dentro de grupos	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499	24 1 23 24 1 23 24 1 23 24 1 23	1,971 1,037 258,811 182,193	1,421	0,245
LSI A_MN SH_MN	Dentro de grupos Total Entre grupos Dentro de grupos Total Total	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514	24 1 23 24 1 23 24 1 23 24 24 24	1,971 1,037 258,811 182,193 0,015 0,109	1,421 0,136	0,245
LSI A_MN SH_MN	Dentro de grupos Total Entre grupos	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001	24 1 23 24 1 23 24 1 23 24 1	1,971 1,037 258,811 182,193 0,015 0,109	1,421	0,245
	Dentro de grupos Total Entre grupos Dentro de grupos	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022	24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109	1,421 0,136	0,245
LSI A_MN SH_MN FR_MN	Dentro de grupos Total Entre grupos Dentro de grupos Total	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022 0,023	24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109 0,001 0,001	0,136 0,962	0,245 0,716 0,337
LSI A_MN 5H_MN FR_MN	Dentro de grupos Total Entre grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022 0,023 0,004	24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109 0,001 0,001	1,421 0,136	0,245
SI A_MN SH_MN FR_MN FR_MD	Dentro de grupos Total Entre grupos Total Entre grupos Total Entre grupos Total	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022 0,023 0,004 0,04 0,04 0,044	24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109 0,001 0,001	0,136 0,962	0,245 0,716 0,337
LSI A_MN SH_MN FR_MN	Dentro de grupos Total Entre grupos Dentro de grupos Dentro de grupos Total Entre grupos Dentro de grupos Total Entre grupos Dentro de grupos	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022 0,023 0,004 0,04 0,04 0,044	24 1 23 24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109 0,001 0,001	0,136 0,962	0,245 0,716 0,337
LSI A_MN SH_MN FR_MN	Dentro de grupos Total Entre grupos Total Entre grupos Total Entre grupos Total	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022 0,023 0,004 0,04 0,04 0,044	24 1 23 24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109 0,001 0,001	0,136 0,962	0,245 0,716 0,337
LSI A_MN SH_MN FR_MN	Dentro de grupos Total Entre grupos Dentro de grupos Total confianza: *90%, **95%, **	3277,961 1,971 23,858 25,829 258,811 4190,443 4449,254 0,015 2,499 2,514 0,001 0,022 0,023 0,004 0,04 0,04 0,044	24 1 23 24 1 23 24 1 23 24 1 23 24 1 23 24	1,971 1,037 258,811 182,193 0,015 0,109 0,001 0,001 0,004 0,002	1,421 0,136 0,962 2,396	0,245 0,716 0,337

Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de 1	normalidad					
		Kolı	mogorov-Smir	nov	Distribución	Distribución
Ме	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,214	23	0,008***		X
2	NP	0,12	23	$,200^{1}$	X	
3	PD	0,118	23	$,200^{1}$	X	
4	LPI	0,217	23	0,006***		X
5	LSI	0,107	23	$,200^{1}$	X	
6	A_MN	0,273	23	<,001***		X
7	SH_MN	0,145	23	,2001	X	
8	SH_MD	0,122	23	,2001	X	
9	FR_MN	0,098	23	,2001	X	
10	FR_MD	0,101	23	,2001	X	
11	ENN_MN	0,282	23	<,001***		X
12	AI	0,161	23	0,127	X	
	límite inferior de la signifi				:	3 Casos pérdidos
Prueba de K	ruskal-Wallis para muestra	as independientes				
Hipótesis nı	ıla			Sig.	Decisión	
-	rencias en PLAND entre ca	-		0,386	Conserve la hipót	
No hay dife	rencias en LPI entre catego	orías de YEAR.		0,644	Conserve la hipót	esis nula.
No hay dife	rencias en A_MN entre cat	tegorías de YEAR.		1	Conserve la hipót	esis nula.
No hay dife	rencias en ENN_MN entre	categorías de YEAR.		0,389	Conserve la hipót	esis nula.
Prueba F pa	ra muestras con distribució	on normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	117,042	1	117,042	1,25	0,276
	Dentro de grupos	2059,917	22	93,633		
	Total	2176,958	23			
PD	Entre grupos	116,453	1	116,453	1,249	0,276
	Dentro de grupos	2051,841	22	93,266		
	Total	2168,294	23			
LSI	Entre grupos	0,18	1	0,18	0,062	0,806
	Dentro de grupos	63,999	22	2,909		
	Total	64,179	23			
SH_MN	Entre grupos	0,011	1	0,011	0,283	0,6
	Dentro de grupos	0,825	22	0,037		
	Total	0,835	23			
SH_MD	Entre grupos	0,009	1	0,009	0,143	0,709
	Dentro de grupos	1,404	22	0,064		
	Total	1,413	23			
FR_MN	Entre grupos	0	1	0	0,177	0,678
	Dentro de grupos	0,021	22	0,001		
	Total	0,021	23			
FR_MD	Entre grupos	0	1	0	0,002	0,964
	Dentro de grupos	0,039	22	0,002		
	Total	0,039	23			
AI	Entre grupos	0,055	1	0,055	0,054	0,819
	Dentro de grupos	22,662	22	1,03		
NT: 1 1	Total confianza: *90%, **95%, *	22,717	23			
Niveles de C						
		FICHA DE ANALISIS	S ESTADISTÍ	COS-DIFERENCIAS	S	
Recorte Ter	ritorial: 1 kilometro		úmero de Casos Uso de Suelo	:: 26 (13 por cada año)		Año: 2020 - 20
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos		Construcción
Dosque	v egetación mundable	Cuerpo de Agua	Cultivos	rasios y Adustos		Construcción

					Suelo Descubierto		
Pruebas de	normalidad				Descublento		
Tracous ac	Homanaa	Vol	magaray Smi	MD OV			
	Cataliana dal Daliania		mogorov-Smi		Distribución	Distribución	
	fetricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre	
1	PLAND	0,172	26	0,045**		X	
2	NP	0,158	26	0,095	X		
3	PD	0,158	26	0,095	X		
4	LPI	0,202	26	0,008***		X	
5	LSI	0,081	26	$,200^{1}$	X		
6	A_MN	0,225	26	0,002***		X	
7	SH_MN	0,084	26	$,200^{1}$	X		
8	SH_MD	0,109	26	,200¹	X		
9	FR_MN	0,119	26	,200¹	X		
10		0,113	26	,200¹	X		
	FR_MD	ŕ			Λ	37	
11	ENN_MN	0,338	26	<,001***		X	
12	AI	0,182	26	0,027**		X	
	n límite inferior de la signific				(Casos pérdidos	
Prueba de l	Kruskal-Wallis para muestra	s independientes					
Hipótesis n	ula			Sig.	Decisión		
No hay dife	erencias en PLAND entre ca	itegorías de YEAR.		<,001***	Rechace la hipóte	esis nula.	
No hay dife	erencias en LPI entre catego	rías de YEAR.		0,007***	Rechace la hipóte	esis nula.	
No hay dife	erencias en A_MN entre cat	egorías de YEAR.		0,033**	Rechace la hipóte	esis nula.	
No hay dife	erencias en ENN_MN entre	categorías de YEAR.		0,27	Conserve la hipótesis nula.		
No hay dife	erencias en AI entre categor	ías de YEAR.		0,086*	Rechace la hipóte	esis nula.	
Prueba F pa	ara muestras con distribució	n normal					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.	
NP	Entre grupos	264,962	1	264,962	2,008	0,169	
	Dentro de grupos	3166,923	24	131,955			
	Total	3431,885	25				
PD	Entre grupos	264,133	1	264,133	2,01	0,169	
	Dentro de grupos	3153,754	24	131,406			
	Total	3417,887	25				
LSI	Entre grupos	3,76	1	3,76	1,027	0,321	
	Dentro de grupos	87,874	24	3,661			
	Total	91,635	25				
SH_MN	Entre grupos	0,015	1	0,015	0,698	0,412	
	Dentro de grupos	0,518	24	0,022			
	Total	0,533	25				
SH_MD	Entre grupos	0,033	1	0,033	1,134	0,298	
	Dentro de grupos	0,689	24	0,029			
	Total	0,721	25				
FR_MN	Entre grupos	0	1	0	0,37	0,549	
	Dentro de grupos	0,013	24	0,001			
	Total	0,013	25				
FR_MD	Entre grupos	0,002	1	0,002	1,719	0,202	
	Dentro de grupos	0,021	24	0,001			
	Total	0,023	25				
Niveles de	confianza: *90%, **95%, *	99%					
		FICHA DE ANALISIS	<u>S ESTADIS</u> TÍ	COS-DIFERENCIA	S		
Recorte Te	rritorial: 1 kilometro			26 (13 por cada año)		Año: 2020 - 2022	
record IC	illional. I knomeno			. 20 (13 por cada allo)		1110. 2020 - 2021	
Bosque	Vegetación Inundable	Cuerpo de Agua	Uso de Suelo Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción	

Pruebas d	le normalidad					
		ŀ	Kolmogorov-Smirn	ov	Distribución	Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,256	20	0,001***		X
2	NP	0,185	20	0,071	X	
3	PD	0,185	20	0,071	X	
4	LPI	0,221	20	0,012**	11	X
5	LSI	0,185	20	0,072	X	Α
6	A MN	0,256	20	0,001***	Α	X
7	_	0,169	20	0,138	X	Λ
	SH_MN	*		*	X	
8	SH_MD	0,171	20	0,129		
9	FR_MN	0,158	20	,200¹	X	
10	FR_MD	0,154	20	,2001	X	
11	ENN_MN	0,358	20	<,001***		X
12	AI	0,139	20	,2001	X	(6 / 111
	un límite inferior de la signifi					6 Casos pérdidos
	e Kruskal-Wallis para muestr	as independientes				
Hipótesis				Sig.	Decisión	_
•	iferencias en PLAND entre c	•		0,279	Conserve la hipó	
	iferencias en LPI entre catego			0,412	Conserve la hipó	
No hay d	iferencias en A_MN entre car	tegorías de YEAR.		0,279	Conserve la hipó	tesis nula.
	iferencias en ENN_MN entre			0,151	Conserve la hipó	tesis nula.
Prueba F	para muestras con distribució	on normal				
	Suma de cuadrados	gl	Media cuadrática	F	Sig.	
NP	Entre grupos	13,136	1	13,136	0,062	0,806
	Dentro de grupos	4238,182	20	211,909		
	Total	4251,318	21			
PD	Entre grupos	13,097	1	13,097	0,062	0,806
	Dentro de grupos	4221,027	20	211,051		
	Total	4234,124	21			
LSI	Entre grupos	2,742	1	2,742	0,545	0,469
	Dentro de grupos	100,665	20	5,033		
	Total	103,408	21	ŕ		
SH MN	Entre grupos	0,065	1	0,065	1,983	0,174
_	Dentro de grupos	0,655	20	0,033	,	-, -
	Total	0,72	21	*,***		
SH MD	Entre grupos	0,095	1	0,095	1,768	0,199
SII_WID	Dentro de grupos	1,073	20	0,054	1,700	0,177
	Total	*		0,034		
ED AOI		1,168	21	0.001	1 172	0.202
FR_MN	Entre grupos	0,001	1	0,001	1,173	0,292
	Dentro de grupos	0,024	20	0,001		
	Total	0,026	21	0.00:	1.04	0.10
FR_MD	Entre grupos	0,004	1	0,004	1,84	0,19
	Dentro de grupos	0,043	20	0,002		
	Total	0,047	21			
AI	Entre grupos	0,003	1	0,003	0,002	0,968
	Dentro de grupos	33,49	20	1,675		
	Total	33,493	21			
Niveles d	le confianza: *90%, **95%, *	***99%				
		FICHA DE ANALI	SIS ESTADISTÍC	OS-DIFERENCIA:	S	
Recorte 7	Territorial: 1 kilometro		Número de Casos: 2	26 (13 por cada año)		Año: 2020 - 2022
			Uso de Suelo	(- 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		. = 0= 0 2022
Bosque	Vegetación Inundable	Cuerpo de Agua		Pastos y Abustos	Suelo Descubierto	Construcción

Trucoas	de normalidad	~ .					
	Metricas del Paisaje	Kol Estadístico	mogorov-S	Smirnov Sig.	Distribución Normal	Distribución Libre	
1	PLAND	0,361	13	<,001***	rvormar	X	
2	NP	0,294	13	0.003***		X	
3	PD	0,294	13	0.003***		X	
4	LPI	0,328	13	<,001***		X	
5	LSI	0,242	13	0,036**		X	
6	A_MN	0,344	13	<,001***		X	
7	SH_MN	0,218	13	0,091	X		
8	SH_MD	0,125	13	$,200^{1}$	X		
9	FR_MN	0,38	13	<,001***		X	
10	FR_MD	0,208	13	0,129	X		
11	ENN_MN	0,314	13	<,001***		X	
12	AI	0,179	13	,2001	X		
1 Esto es	s un límite inferior de la sig	nificación verdadera.					
13 Caso	s pérdidos						
Prueba o	le Kruskal-Wallis para mu	estras independientes					
Hipótesis nula			Sig.	Decisión			
No hay	diferencias en PLAND enti	re categorías de YEAR.		0,68	Conserve la hipóte	esis nula.	
No hay	diferencias en NP entre cat	egorías de YEAR.		0,163	Conserve la hipóte	esis nula.	
No hay	diferencias en PD entre cat	egorías de YEAR.		0,13	Conserve la hipóte	esis nula.	
No hay	diferencias en LPI entre ca	tegorías de YEAR.		0,509	Conserve la hipóte	esis nula.	
No hay	diferencias en LSI entre ca	tegorías de YEAR.		0,248	Conserve la hipótesis nula.		
No hay	diferencias en A_MN entre	categorías de YEAR.		0,364	Conserve la hipótesis nula.		
No hay	diferencias en FR_MN entr	re categorías de YEAR.		0,457	Conserve la hipóte	esis nula.	
No hay	diferencias en ENN_MN e	ntre categorías de YEAR.		0,884	Conserve la hipóte	esis nula.	
Prueba l	F para muestras con distrib	ución normal					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.	
SH_MN	Entre grupos	0,161	1	0,161	0,706	0,413	
	Dentro de grupos	3,874	17	0,228			
	Total	4,035	18				
SH_MD	Entre grupos	0,06	1	0,06	0,276	0,606	
	Dentro de grupos	3,668	17	0,216			
	Total	3,728	18				
FR_MD	Entre grupos	0	1	0	0,01	0,92	
	Dentro de grupos	0,021	17	0,001			
	Total	0,021	18				
ΑI	Entre grupos	0	1	0	0	0,993	
	Dentro de grupos	4,454	17	0,262			
	Total	4,454	18				

Grupo 2.5. RT2 (1 km) -Análisis estadístico de diferencias entre 2020 y 2022 en el eje fluvial 2: río Napo.

Recorte T	erritorial: 1 kilometro	Núm	nero de Casos: 2	20 (10 por cada año)		Año: 2020 - 202
			o de Suelo	(- + f		
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
D 1 1	11.1					
Pruebas d	e normalidad					
			mogorov-Smir		Distribución	Distribución
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,231	19	0,009***	37	X
2	NP PD	0,177	19 19	0,121	X X	
3 4	LPI	0,177 0,118	19	$0,12$ $,200^{1}$	X	
1 5	LSI	0,118	19	0,068	X	
6	A MN	0,19	19	0,06	X	
7	SH_MN	0,096	19	$,200^{1}$	X	
8	SH_MD	0,094	19	$,200^{1}$	X	
9	FR_MN	0,236	19	0,007***	71	X
10	FR MD	0,261	19	0,001***		X
11	ENN MN	0,266	19	0,001		X
12	AI	0,285	19	<.001***		X
	un límite inferior de la significac	· ·		,		1 Caso pérdido
	Kruskal-Wallis para muestras in					r cuso peruruo
Hipótesis	* · · · · · · · · · · · · · · · · · · ·	1		Sig.	Decisión	
	ferencias en PLAND entre categ	rorías de YEAR		0,406	Conserve la hipó	otesis nula.
-	ferencias en FR_MN entre categ			0,705	Conserve la hipó	
-	ferencias en FR_MD entre categ			0,226	Conserve la hipó	
-	ferencias en ENN MN entre cat			0,022**	Rechace la hipót	
-	ferencias en AI entre categorías	-		0,082*	Rechace la hipót	
	para muestras con distribución n			,	•	
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	414,05	1	414,05	11,05	0,004***
	Dentro de grupos	674,5	18	37,472		
	Total	1088,55	19			
PD	Entre grupos	412,779	1	412,779	11,051	0,004***
	Dentro de grupos	672,322	18	37,351		
	Total	1085,101	19			
LPI	Entre grupos	6,052	1	6,052	0,017	0,897
	Dentro de grupos	6376,717	18	354,262		
	Total	6382,769	19			
LSI	Entre grupos	10,728	1	10,728	8,176	0,01***
	Dentro de grupos	23,617	18	1,312		
	Total	34,345	19			
A_MN	Entre grupos	436,554	1	436,554	3,059	0,097*
	Dentro de grupos	2569,115	18	142,729		
	Total	3005,669	19			
SH_MN	Entre grupos	0,057	1	0,057	1,582	0,225
	Dentro de grupos	0,646	18	0,036		
	Total	0,703	19			
SH_MD	Entre grupos	0,236	1,000	0,236	4,814	0,042**
	Dentro de grupos	0,882	18,000	0,049		
	Total e confianza: *90%, **95%, ***9	1,117	19,000			
	3 CONTION 70 * ***(***U\U/* ***(14*/0				

Recorte Ter	ritorial: 1 kilometro	Nú	imero de Casos	s: 20 (10 por cada año)		Año: 2020 - 2022
		1	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de 1	normalidad					
		Kol	mogorov-Smi	rnov	Distribución	Distribución
M	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,336	17	<,001***		X
2	NP	0,213	17	0,039**		X
3	PD	0,213	17	0,04**		X
4	LPI	0,427	17	<,001***		X
5	LSI	0,152	17	,2001	X	
6	A_MN	0,428	17	<,001***		X
7	SH_MN	0,22	17	0,028**		X
8	SH_MD	0,206	17	0,054	X	
9	FR_MN	0,196	17	0,081	X	
10	FR_MD	0,163	17	,200 ¹	X	
11	ENN_MN	0,324	17	<,001***		X
12	AI	0,151	17	,2001	X	
1 Esto es un	límite inferior de la signifi	icación verdadera.				
3 Casos pér	didos					
Prueba de K	Lruskal-Wallis para muestr	as independientes				
Hipótesis nu	ıla			Sig.	Decisión	
No hay dife	rencias en PLAND entre c	ategorías de YEAR.		0,288	Conserve la hipó	tesis nula.
-	rencias en NP entre catego	=		0,806	Conserve la hipó	tesis nula.
-	rencias en PD entre catego			0,806	Conserve la hipó	
-	rencias en LPI entre catego			0,13	Conserve la hipó	
-	rencias en A_MN entre car			0,06*	Rechace la hipóte	
	rencias en SH_MN entre c			0,165	Conserve la hipó	
-	rencias en ENN MN entre	-		0,63	Conserve la hipó	
Prueba F pa	ra muestras con distribució	on normal			-	
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	0,105	1	0,105	0,014	0,908
	Dentro de grupos	129,765	17	7,633	,	,
	Total	129,87	18	.,		
SH MD	Entre grupos	0,011	1	0,011	0,113	0,741
	Dentro de grupos	1,694	17	0,1	*,	-,,
	Total	1,705	18	-,-		
FR MN	Entre grupos	0	1	0	0,023	0,882
	Dentro de grupos	0,043	17	0,003		,
	Total	0,043	18	-,		
FR_MD	Entre grupos	0,001	1	0,001	0,325	0,576
- 11_1.112	Dentro de grupos	0,055	17	0,003	-,	-,-,-
	Total	0,056	18	- ,		
AI	Entre grupos	18,555	1	18,555	4,689	0,045**
	Dentro de grupos	67,267	17	3,957	.,	0,0.0
	Total	85,822	18	-,,		
Niveles de d	confianza: *90%, **95%, *	***99%	10			
		FICHA DE ANALISIS				
Recorte Ter	ritorial: 1 kilometro	Nú	mero de Casos	: 20 (10 por cada año)		Año: 2020 - 2022

Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcció
Pruebas de	normalidad					
N	Metricas del Paisaje	Koli Estadístico	mogorov-Smir gl	rnov Sig.	Distribución Normal	Distribució Libre
	PLAND	0,143	12	,200¹	X	
2	NP	0,199	12	,2001	X	
} !	PD LPI	0,2	12 12	,200¹	X X	
;	LSI	0,167 0,215	12	,200¹ 0,133	X X	
· · !	A MN	0,207	12	0,165	X	
	SH_MN	0,186	12	,2001	X	
	SH_MD	0,167	12	,2001	X	
0	FR_MN	0,232	12	0,075	X	
0	FR_MD ENN MN	0,156 0,281	12 12	,200¹ 0,01***	X	X
2	AI	0,198	12	,2001	X	Λ
	n límite inferior de la signific			,		8 Casos pérdido
Prueha de l	Kruskal-Wallis para muestra	s independientes				
Hipótesis n	*	, macpendientes		Sig.	Decisión	
	erencias en ENN_MN entre	categorías de YEAR.		0,522	Conserve la hipò	ótesis nula.
	ara muestras con distribución			· .	P	
.acour p	ara maccado con distribución	Suma de cuadrados	gl	M-4: 17:	E	g:.
	Entro cons		1	Media cuadrática	F	Sig.
PLAND	Entre grupos	0,141		0,141	0,001	0,981
	Dentro de grupos	4496,918	18	249,829		
	Total	4497,058	19			
NΡ	Entre grupos	4,05	1	4,05	0,296	0,593
	Dentro de grupos	246,5	18	13,694		
	Total	250,55	19			
PD	Entre grupos	4,027	1	4,027	0,295	0,594
	Dentro de grupos	245,517	18	13,64	.,	
	Total	249,543	19	15,0.		
_PI	Entre grupos	1,043	1	1,043	0,004	0,951
21.1	Dentro de grupos	4877,508	18	270,973	0,004	0,751
	Total	4878,551	19	210,913		
CI				0.161	0.000	0.756
LSI	Entre grupos	0,161	1	0,161	0,099	0,756
	Dentro de grupos	29,18	18	1,621		
	Total	29,341	19			
A_MN	Entre grupos	60,842	1	60,842	0,162	0,692
	Dentro de grupos	6761,387	18	375,633		
	Total	6822,228	19			
SH_MN	Entre grupos	0,005	1	0,005	0,031	0,862
	Dentro de grupos	3,052	18	0,17		
	Total	3,057	19			
SH_MD	Entre grupos	0,008	1	0,008	0,044	0,836
_	Dentro de grupos	3,3	18	0,183		•
	Total	3,308	19	.,		
FR MN	Entre grupos	0	1	0	0,136	0,716
	Dentro de grupos	0,034	18	0,002	0,130	0,710
	Total	0,034	19	3,002		
D MD	Entre grupos	0	19	0	0,132	0,721
FR_MD				0,002	0,132	0,721
	Dentro de grupos	0,037	18	0,002		
	Total	0,037	19	0.022	0.22	0.637
AI	Entre grupos	0,023	1	0,023	0,23	0,637
	Dentro de grupos	1,793	18	0,1		
r	Total	1,816	19			
liveles de	confianza: *90%, **95%, **	**99%				
		EICHA DE ANALYS	ECT A DIOTE	COS DIFERENCIA		
		FICHA DE ANALISIS				
agorta To	rritorial: 1 kilometro	Núi	nero de Casos:	20 (10 por cada año)		Año: 2020 - 2

Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de r	normalidad					
		Kol	mogorov-Smir	nov	Distribución	Distribución
Me	etricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,306	18	<,001***		X
2	NP	0,166	18	$,200^{1}$	X	
3	PD	0,166	18	$,200^{1}$	X	
4	LPI	0,36	18	<,001***		X
5	LSI	0,135	18	$,200^{1}$	X	
6	A_MN	0,264	18	0,002***		X
7	SH MN	0,145	18	,2001	X	
8	SH_MD	0,138	18	$,200^{1}$	X	
9	FR_MN	0,265	18	0,002***		X
10	FR MD	0,181	18	0,124	X	21
11	ENN_MN	0,253	18	0,003***	A	X
12	AI	0,174	18	0,153	X	A
	límite inferior de la signifi	•	16	0,133		Casas mándidas
	ruskal-Wallis para muestr					Casos pérdidos
	*	as macpenarentes		C:a	Decisión	
Hipótesis nu No bay dife	rencias en PLAND entre c	otegorías de VEAD		Sig. 0,929	Conserve la hipóte	acie nula
•	rencias en LPI entre catego	•		0,722	Conserve la hipót	
-	rencias en A_MN entre car			0,155	Conserve la hipóte	
-	rencias en FR MN entre c			0,328	Conserve la hipóte	
-	rencias en ENN_MN entre	-		0,328	Conserve la hipóte	
Prueba F pai	ra muestras con distribució	on normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	1512,9	1	1512,9	5,62	0,031**
	Dentro de grupos	4307,1	16	269,194		
	Total	5820	17			
PD	Entre grupos	1508,304	1	1508,304	5,623	0,031**
	Dentro de grupos	4292,164	16	268,26		
r cr	Total	5800,468	17	24 201	7 111	0,017**
LSI	Entre grupos	24,381 54,859	1 16	24,381 3,429	7,111	0,01/**
	Dentro de grupos Total	79,24	17	3,429		
SH_MN	Entre grupos	0,002	1	0,002	0,066	0,801
311_1/11 (Dentro de grupos	0,509	16	0,032	0,000	0,001
	Total	0,511	17	0,002		
SH MD	Entre grupos	0,021	1	0,021	0,616	0,444
_	Dentro de grupos	0,533	16	0,033		
	Total	0,554	17			
FR_MD	Entre grupos	0,004	1	0,004	2,182	0,159
	Dentro de grupos	0,028	16	0,002		
	Total	0,032	17			
AI	Entre grupos	4,37	1	4,37	2,224	0,155
	Dentro de grupos	31,445	16	1,965		
Niveles de -	Total confianza: *90%, **95%, *	35,815	17			
viveies de c	onnanza: *90%, **95%, *	····99%				
l		FICHA DE ANALISIS	S ESTADISTÍC	COS-DIFERENCIAS		
Recorte Terr	ritorial: 1 kilometro	Nı	ímero de Casos	s: 20 (10 por cada año)		Año: 2020 - 20
Bosque	Vegetación Inundable	Cuerpo de Agua	Uso de Suelo Cultivos	Pastos y Abustos		

					Suelo Descubierto	
Pruebas de	normalidad				Bescubierto	
		Kol	mogorov-Smir	rnov		
ν	letricas del Paisaje	Estadístico	gl	Sig.	Distribución Normal	Distribución Libre
1	PLAND	0,257	20	0,001***	Tioning	X
2	NP	0,216	20	0,016**		X
3	PD	0,216	20	0,015**		X
4	LPI	0,308	20	<.001***		X
5	LSI	0,158	20	,200¹	X	
6	A MN	0,329	20	<.001***		X
7	SH_MN	0,171	20	0,128	X	
8	SH_MD	0,109	20	,200¹	X	
9	FR_MN	0,173	20	0,118	X	
10	FR_MD	0,151	20	,200¹	X	
11	ENN_MN	0,234	20	0.005***	Λ	X
12	AI	0,207	20	0,024**		X
			20	0,024		Λ
	n límite inferior de la signific	cacion verdadera.				
0 Casos pér Prueba de I	raidos Kruskal-Wallis para muestra	as independientes				
Hipótesis n				Sig.	Decisión	
•	erencias en PLAND entre ca	ntegorías de VEAR		0,94	Conserve la hipót	esis nula
-	erencias en NP entre categor	-		0,325	Conserve la hipótesis nula.	
-	erencias en PD entre categor		0,307	Conserve la hipót		
				0,705	_	
No hay diferencias en LPI entre categorías de YEAR.				ŕ	Conserve la hipót	
	No hay diferencias en A_MN entre categorías de YEAR. 1 Conserve la hipó					
No hay diferencias en ENN_MN entre categorías de YEAR.				0,94	Conserve la hipót	
	erencias en AI entre categor ara muestras con distribució			0,705	Conserve la hipót	esis nuia.
Tracour po	ara maestras con alsanoacio	Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entro orunos		1		0,015	0,903
LSI	Entre grupos	0,082		0,082	0,013	0,903
	Dentro de grupos	95,942	18	5,33		
CII NOI	Total	96,023	19	0.002	1 271	0.257
SH_MN	Entre grupos	0,083	1	0,083	1,371	0,257
	Dentro de grupos	1,092	18	0,061		
	Total	1,175	19			
SH_MD	Entre grupos	0,061	1	0,061	2,133	0,161
	Dentro de grupos	0,518	18	0,029		
	Total	0,579	19			
FR_MN	Entre grupos	0	1	0	0,363	0,554
	Dentro de grupos	0,016	18	0,001		
	Total	0,016	19			
FR_MD	Entre grupos	0,005	1	0,005	3,094	0,096*
	Dentro de grupos	0,029	18	0,002		
	Total	0,034	19			
Niveles de	confianza: *90%, **95%, *	**99%				
		FICHA DE ANALISIS	S ESTADISTÍC	COS-DIFERENC <u>IAS</u>	.	
Recorte Te	rritorial: 1 kilometro			: 20 (10 por cada año)		Año: 2020 - 2022
			Uso de Suelo	(]		
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción

			~ .			
			mogorov-Smi		Distribución	Distribución
	letricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,167	16	$,200^{1}$	X	
2	NP	0,196	16	0,1	X	
3	PD	0,196	16	0,1	X	
4	LPI	0,294	16	<,001***		X
5	LSI	0,211	16	0,055	X	
6	A_MN	0,354	16	<,001***		X
7	SH_MN	0,185	16	0,144	X	
8	SH_MD	0,214	16	0,049**		X
9	FR_MN	0,118	16	$,200^{1}$	X	
10	FR_MD	0,188	16	0,132	X	
11	ENN_MN	0,353	16	<,001***		X
12	AI	0,187	16	0,139	X	
Esto es ur	límite inferior de la signifi	cación verdadera.				
4 Casos pé	didos					
Prueba de 1	Kruskal-Wallis para muestra	as independientes				
Hipótesis n	ula			Sig.	Decisión	
	rencias en LPI entre catego	orías de YEAR.		0,288	Conserve la hipót	esis nula.
-	rencias en A_MN entre cat			0,327	Conserve la hipót	
-	erencias en SH_MD entre ca	-		0,411	Conserve la hipót	
-	rencias en ENN_MN entre			0.023**	Rechace la hipóte	
	ra muestras con distribució			·,·	recinace la impore	
<u>.</u>		Suma de cuadrados	gl	Media cuadrática	F	Sig.
PLAND	Entro ominos	0,165	1		0,143	0,71
PLAND	Entre grupos	*		0,165	0,143	0,71
	Dentro de grupos	19,604	17	1,153		
. ID	Total	19,769	18	220 624	0.475	0.5
NP	Entre grupos	230,634	1	230,634	0,475	0,5
	Dentro de grupos	8255,156	17	485,597		
	Total	8485,789	18			
PD	Entre grupos	230,057	1	230,057	0,476	0,5
	Dentro de grupos	8222,724	17	483,69		
	Total	8452,78	18			
LSI	Entre grupos	3,934	1	3,934	0,519	0,481
	Dentro de grupos	128,924	17	7,584		
	Total	132,858	18			
SH_MN	Entre grupos	0,013	1	0,013	0,406	0,533
	Dentro de grupos	0,541	17	0,032		
	Total	0,553	18			
FR_MN	Entre grupos	0	1	0	0,411	0,53
_	Dentro de grupos	0,014	17	0,001		
	Total	0,014	18			
FR_MD	Entre grupos	0	1	0	0,047	0,831
_	Dentro de grupos	0,037	17	0,002	*	*
	Total	0,037	18	*		
AI	Entre grupos	7,78	1	7,78	1,721	0,207
	Dentro de grupos	76,861	17	4,521	1,121	0,207
	Total	84,641	18	7,521		
Niveles de	confianza: *90%, **95%, *	**99%	10			
	, , , , , , ,					
		FICHA DE ANALISIS	ESTADISTÍ	COS-DIFERENCIAS	S	
Recorto To	ritorial: 1 kilometro			: 20 (10 por cada año)		Año: 2020 - 20
хесопе те	monai, i knometro			. 20 (10 por cada ano)		A110: 2020 - 20
			Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción

			lmogorov-S	mirnov	Distribución	Distribución
N	letricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,305	14	<,001***		X
2	NP	0,341	14	<,001***		X
3	PD	0,34	14	<,001***		X
1	LPI	0,299	14	0,001***		X
5	LSI	0,233	14	0,038**		X
5	A_MN	0,313	14	<,001		X
7	SH_MN	0,172	14	,2001	X	
3	SH_MD	0,207	14	0,107	X	
9	FR_MN	0,149	14	,2001	X	
10	FR_MD	0,237	14	0,032**		X
11	ENN_MN	0,262	14	0,01***		X
12	AI	0,146	14	,200¹	X	
Esto es u	n límite inferior de la sig	nificación verdadera.				
6 Casos pé						
Prueba de	Kruskal-Wallis para mue	estras independientes				
Hipótesis nula				Sig.	Decisión	
No hay diferencias en PLAND entre categorías de YEAR.				0,38	Conserve la hipóte	esis nula.
No hay diferencias en NP entre categorías de YEAR.				0,721	Conserve la hipóte	esis nula.
No hay dif	erencias en PD entre cate	egorías de YEAR.		0,839	Conserve la hipóte	esis nula.
No hay dif	erencias en LPI entre cat	tegorías de YEAR.		0,38	Conserve la hipóte	esis nula.
No hay dif	erencias en LSI entre cat	tegorías de YEAR.		0,845	Conserve la hipóte	esis nula.
No hay dif	erencias en A_MN entre	categorías de YEAR.		0,329	Conserve la hipóte	esis nula.
No hay dif	erencias en FR_MD entr	re categorías de YEAR.		0,558	Conserve la hipótesis nula.	
No hay dif	erencias en ENN MN er	ntre categorías de YEAR.		0,897	Conserve la hipóte	esis nula.
Prueba F p	ara muestras con distribi	ación normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
SH_MN	Entre grupos	0,009	1	0,009	0,514	0,485
	Dentro de grupos	0,254	15	0,017		
	Total	0,262	16			
SH_MD	Entre grupos	0,012	1	0,012	0,847	0,372
	Dentro de grupos	0,207	15	0,014		
	Total	0,219	16			
FR_MN	Entre grupos	0,001	1	0,001	1,109	0,309
_	Dentro de grupos	0,009	15	0,001		
	Total	0,009	16			
ΑI	Entre grupos	0,38	1	0,38	0,683	0,422
	Dentro de grupos	8,341	15	0,556	,	,
	Total	8,721	16	,		

Grupo 2.6. RT2 (1 km) -Análisis estadístico de diferencias entre 2020 y 2022 en el eje fluvial 3: río Payamino.

	FICHA DE ANALISIS ESTADISTÍCOS-DIFERENCIAS								
Recorte Territorial: 1 kilometro Número de Casos: 30 (15 por cada año) Año: 2020 - 2022									
	Uso de Suelo								
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción			

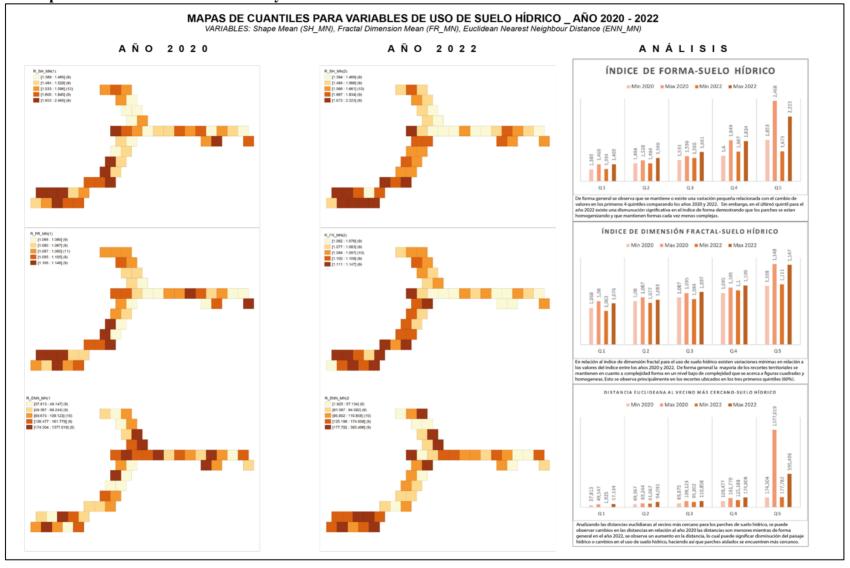
Pruebas de	normalidad						
		Ke	olmogorov-Sn	nirnov	Distribución	Distribución	
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre	
1	PLAND	0,211	28	0,003***		X	
2	NP	0,155	28	0,084	X		
3	PD	0,154	28	0,088	X		
4	LPI	0,214	28	0,002***		X	
5	LSI	0,096	28	$,200^{1}$	X		
6	A_MN	0,324	28	<,001***		X	
7	SH_MN	0,216	28	0,002***		X	
8	SH_MD	0,16	28	0,063	X		
9	FR_MN	0,166	28	0,046**		X	
10	FR MD	0,112	28	$,200^{1}$	X		
11	ENN MN	0,21	28	0,003***		X	
12	AI	0,401	28	<,001***		X	
¹ Esto es ui	n límite inferior de la signific	ación verdadera.					
2 Casos pé							
Prueba de	Kruskal-Wallis para muestra	s independientes					
Hipótesis r	nula			Sig.	Decisión		
No hay dif	erencias en PLAND entre ca	tegorías de YEAR.		0,15	Conserve la hipót	tesis nula.	
No hay dif	erencias en LPI entre categor	rías de YEAR.		0,152	Conserve la hipótesis nula.		
No hay dif	erencias en A_MN entre cate	encias en A_MN entre categorías de YEAR. 0,272 Conserve la hipótesis nul				tesis nula.	
No hay dif	erencias en SH_MN entre ca	tegorías de YEAR.		0,548	Conserve la hipót	tesis nula.	
-	erencias en FR_MN entre ca	=		0,206	Conserve la hipót		
-	erencias en ENN_MN entre	=		0,337	Conserve la hipót		
	erencias en AI entre categorí			0,395	Conserve la hipót	tesis nula	
	ara muestras con distribución			0,575	competite in impos	iosis mara.	
		Suma de cuadrado	s gl	Media cuadrática	F	Sig.	
NP	Entre grupos	4,8	1	4,8	0,153	0,699	
	Dentro de grupos	879,067	28	31,395			
, DD	Total	883,867	29	4.551	0.152	0.600	
PD	Entre grupos Dentro de grupos	4,771 875,525	1 28	4,771 31,269	0,153	0,699	
	Total	880,297	29	31,209			
LSI	Entre grupos	0,22	1	0,22	0,192	0,665	
	Dentro de grupos	32,192	28	1,15	,	,	
	Total	32,412	29				
SH_MD	Entre grupos	0,172	1	0,172	1,379	0,25	
	Dentro de grupos	3,485	28	0,124			
ED MD	Total	3,657	29	0.004	1.166	0.200	
FR_MD	Entre grupos Dentro de grupos	0,004 0,094	1 28	0,004 0,003	1,166	0,289	
	Total	0,094	29	0,003			
Niveles de	confianza: *90%, **95%, **						
			nom	200 5000			
		FICHA DE ANALISIS					
Recorte Te	erritorial: 1 kilometro			:: 30 (15 por cada año)		Año: 2020 - 2022	
Bosque	Vegetación Inundable	Cuerpo de Agua	Uso de Suelo Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción	
Deniales - 1	normalida d						
rruevas de	normalidad	w= -	~ :				
_	# . ' 1 1 D ' '		nogorov-Smir		Distribución	Distribución	
	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre	
1	PLAND	0,232	23	0,002***		X	

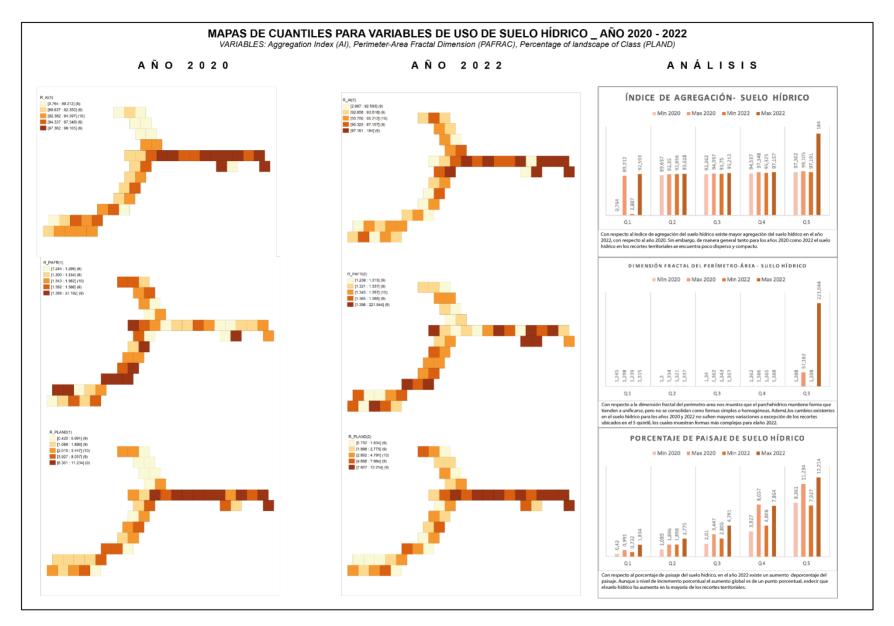
ı						
2	NP	0,166	23	0,098	X	
3	PD	0,167	23	0,098	X	
4	LPI	0,2	23	0,018**		X
5	LSI	0,162	23	0,12	X	
6	A_MN	0,228	23	0.003***		X
7	SH_MN	0,127	23	,200¹	X	
8	SH MD	0,352	23	<.001***		X
9	_	0,116	23	,2001	X	Α
_	FR_MN	, in the second second			Λ	37
10	FR_MD	0,25	23	<,001***		X
11	ENN_MN	0,255	23	<,001***		X
12	AI	0,098	23	,2001	X	
¹ Esto es un	límite inferior de la signific	cación verdadera.				
7 Casos pér	didos					
Prueba de K	Zruskal-Wallis para muestra	as independientes				
Hipótesis n	ıla			Sig.	Decisión	
	rencias en PLAND entre ca	ntegorías de VEAR		0,55	Conserve la hipó	tesis nula
	rencias en LPI entre catego	•		0,341	Conserve la hipó	
-	_				=	
•	rencias en A_MN entre cat	•		0,044**	Rechace la hipóte	
-	rencias en SH_MD entre ca	=		0,078*	Rechace la hipóte	
-	rencias en FR_MD entre ca	-		0,094*	Rechace la hipóte	
	rencias en ENN MN entre			0,295	Conserve la hipó	tesis nula.
Prueba F pa	ra muestras con distribució					
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	650,679	1	650,679	1,699	0,205
	Dentro de grupos	8807,481	23	382,934		
	Total	9458,16	24			
PD	Entre grupos	647,459	1	647,459	1,697	0,206
	Dentro de grupos	8773,545	23	381,458		
T 07	Total	9421,004	24	2.202	0.505	0.450
LSI	Entre grupos	3,383	1	3,383	0,585	0,452
	Dentro de grupos	133,103	23	5,787		
CII MNI	Total	136,486	24	0.105	4.766	0.020**
SH_MN	Entre grupos Dentro de grupos	0,195 0,942	1 23	0,195 0,041	4,766	0,039**
	Total	1,137	23 24	0,041		
FR_MN	Entre grupos	0,006	1	0,006	4,122	0,054*
I'IX_IVIIN	Dentro de grupos	0,032	23	0,000	4,122	0,034
	Total	0,038	24	0,001		
AI	Entre grupos	16,834	1	16,834	6,071	0.022**
111	Dentro de grupos	63,775	23	2,773	0,071	0,022
	Total	80,609	24	,		
Niveles de	confianza: *90%, **95%, *					
_		FICHA DE ANALISIS	FCTADICTÍA	COS DIFFDENCIAS		
_						
Recorte Ter	ritorial: 1 kilometro			s: 30 (15 por cada año)		Año: 2020 - 2022
		1	Uso de Suelo			
Bosque	Vegetación Inundable	e Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de	normalidad					
		Ko	olmogorov-Sm	irnov	Distribución	Distribución
N	Metricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,232	5	,2001	X	
2 3	NP PD	0,473 0,473	5 5	<,001*** <,001***		X X
4	LPI	0,473	5	,200 ¹	X	Λ
•						

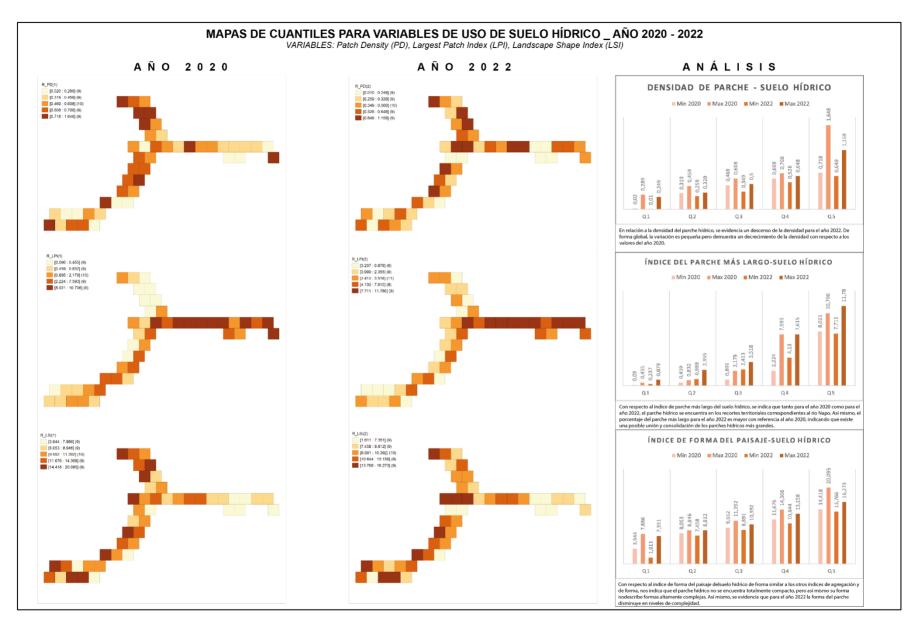
5	LSI	0,34	5	0,06	X	
6	A MN	0,23	5	$,200^{1}$	X	
7	SH_MN	0,245	5	,2001	X	
8	SH_MD	0,284	5	,2001	X	
9	FR_MN	0,217	5	,200¹	X	
10 11	FR_MD ENN_MN	0,236 0,271	5 5	$,200^{1}$ $,200^{1}$	X X	
12	AI	0,322	5	0,099	X	
¹ Esto es un	límite inferior de la signifi	icación verdadera.				25 Casos pérdidos
	ruskal-Wallis para muestra	as independientes				
Hipótesis nu		/ 1 MEAD		Sig.	Decisión	7, 1
	rencias en NP entre catego rencias en PD entre catego			0,586 0,372	Conserve la hip Conserve la hip	
	ra muestras con distribució			0,372	Conscive la imp	otesis iiuia.
F		Suma de cuadrados	gl	Media cuadrática	F	Sig.
PLAND	Entre grupos	7,904	1	7,904	0,514	0,479
TEMIND	Dentro de grupos	430,852	28	15,388	0,514	0,477
	Total	438,756	29	13,366		
LPI	Entre grupos	10,193	1	10,193	0,624	0,436
LFI	Dentro de grupos	457,244	28	16,33	0,024	0,430
	• .			10,55		
LSI	Total	467,437 0,006	29 1	0,006	0,043	0,837
LOI	Entre grupos Dentro de grupos	· ·	28	0,006	0,043	0,03/
	Total	3,634 3,639	28 29	0,13		
A MOST				11 100	0.664	0.422
A_MN	Entre grupos	11,199	1	11,199	0,664	0,422
	Dentro de grupos	472,446	28	16,873		
CILANI	Total	483,644	29	0.020	0.241	0.620
SH_MN	Entre grupos	0,029	1	0,029	0,241	0,628
	Dentro de grupos	3,376	28	0,121		
CII MD	Total	3,405	29	0.07	0.522	0.475
SH_MD	Entre grupos	0,07	1	0,07	0,523	0,475
	Dentro de grupos	3,741	28	0,134		
	Total	3,811	29			0.776
FR_MN	Entre grupos	0	1	0	0,099	0,756
	Dentro de grupos	0,025	28	0,001		
	Total	0,025	29			
FR_MD	Entre grupos	0	1	0	0,374	0,546
	Dentro de grupos	0,027	28	0,001		
	Total	0,028	29			
ENN_MN	Entre grupos	54610,97	1	54610,97	0,838	0,428
	Dentro de grupos	195531,599	3	65177,2		
	Total	250142,568	4			
AI	Entre grupos	0,053	1	0,053	0,7	0,41
	Dentro de grupos	2,123	28	0,076		
N:1 1	Total	2,176	29			
Niveles de c	onfianza: *90%, **95%, *	***99%				
		FICHA DE ANALISIS	ESTADISTÍ	COS-DIFERENCIAS		
Recorte Terr	ritorial: 1 kilometro	Núi	mero de Casos	: 30 (15 por cada año)		Año: 2020 - 2022
		1	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de r	ormalidad					
		Koln	nogorov-Smir	nov	Distribución	Distribución
Me	tricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,316	27	<,001***		X
2	NP	0,25	27	<,001***		X
3	PD	0,25	27	<,001***		X
3	עו	0,23	21	~,001 · · ·		Λ

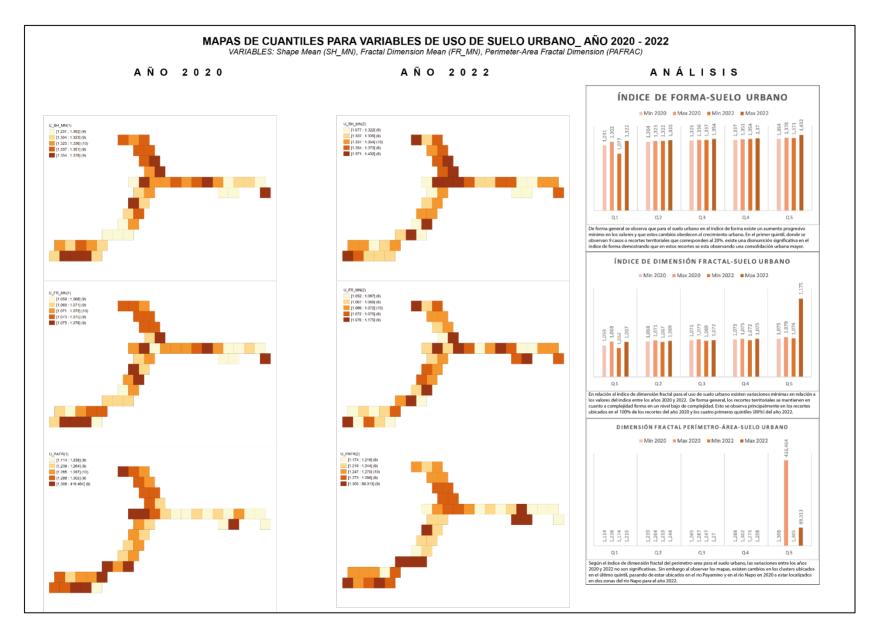
4	LPI	0,342	27	<,001***		X
5	LSI	0,166	27	0,055	X	
6	A_MN	0,306	27	<,001***		X
7	SH_MN	0,118	27	$,200^{1}$	X	
8	SH_MD	0,125	27	$,200^{1}$	X	
9	FR MN	0,155	27	0,097	X	
10	FR MD	0,109	27	,2001	X	
11	ENN_MN	0,193	27	0,011**		X
12	AI	0,162	27	0,068	X	
	ı límite inferior de la signif		27	0,000		
3 Casos pér	=	icación verdadera.				
	Kruskal-Wallis para muestr	as independientes				
Hipótesis n	*	1		Sig.	Decisión	
	erencias en PLAND entre c	ategorías de VEAR		0,965	Conserve la hipót	ecic nula
-	erencias en NP entre catego	~		0,022**	Rechace la hipóte	
	erencias en PD entre catego			0,023**	Rechace la hipóte	
	erencias en LPI entre catego			0,6	Conserve la hipót	
-	erencias en A_MN entre ca			0,206	Conserve la hipót	
-	erencias en ENN_MN entre	-		0,662	Conserve la hipót	
Prueba F pa	ara muestras con distribuci	ón normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	20,176	1	20,176	5,065	0,033**
	Dentro de grupos	107,546	27	3,983		
	Total	127,722	28			
SH_MN	Entre grupos	0,32	1	0,32	6,022	0,021**
	Dentro de grupos	1,437	27	0,053		
arr v m	Total	1,757	28	0.044		0.00444
SH_MD	Entre grupos	0,361	1	0,361	5,759	0,024**
	Dentro de grupos	1,691	27	0,063		
FR_MN	Total Entre grupos	2,051 0,01	28 1	0,01	4,07	0,054*
LK_MIN	Dentro de grupos	0,067	27	0,002	4,07	0,034
	Total	0,077	28	0,002		
FR_MD	Entre grupos	0,017	1	0,017	7,161	0.013**
_	Dentro de grupos	0,065	27	0,002	., .	-,-
	Total	0,083	28	,		
AI	Entre grupos	0,414	1	0,414	0,141	0,71
	Dentro de grupos	79,234	27	2,935		
NT: 1 1	Total	79,648	28			
Niveles de	Total confianza: *90%, **95%,		28			
Niveles de				COS-DIFERENCIAS	1	
		***99% FICHA DE ANALISI	S ESTADISTÍO	COS-DIFERENCIAS s: 30 (15 por cada año)		Año: 2020 - 2022
	confianza: *90%, **95%,	***99% FICHA DE ANALISI	S ESTADISTÍO			Año: 2020 - 2022
	confianza: *90%, **95%,	***99% FICHA DE ANALISI	S ESTADISTÍO úmero de Casos			Año: 2020 - 2022 Construcción
Recorte Ter Bosque	confianza: *90%, **95%, rritorial: 1 kilometro	***99% FICHA DE ANALISI N	S ESTADISTÍo úmero de Casos Uso de Suelo	s: 30 (15 por cada año)	Suelo	
Recorte Ter Bosque	rritorial: 1 kilometro Vegetación Inundable	***99% FICHA DE ANALISI N Cuerpo de Agua	S ESTADISTÍo úmero de Casos Uso de Suelo	s: 30 (15 por cada año) Pastos y Abustos	Suelo Descubierto	Construcción
Recorte Ter Bosque Pruebas de	rritorial: 1 kilometro Vegetación Inundable	***99% FICHA DE ANALISI N Cuerpo de Agua	S ESTADISTÍ úmero de Casos Uso de Suelo Cultivos	s: 30 (15 por cada año) Pastos y Abustos	Suelo	
Recorte Ter Bosque Pruebas de	rritorial: 1 kilometro Vegetación Inundable normalidad	FICHA DE ANALISI N Cuerpo de Agua	S ESTADISTÍO úmero de Casos Uso de Suelo Cultivos	Pastos y Abustos	Suelo Descubierto Distribución	Construcción Distribución
Recorte Ter Bosque Pruebas de	rritorial: 1 kilometro Vegetación Inundable normalidad fetricas del Paisaje	FICHA DE ANALISI N Cuerpo de Agua Ko Estadístico	S ESTADISTÍO úmero de Casos Uso de Suelo Cultivos	Pastos y Abustos rnov Sig.	Suelo Descubierto Distribución	Construcción Distribución Libre
Recorte Ter Bosque Pruebas de	rritorial: 1 kilometro Vegetación Inundable normalidad Ietricas del Paisaje PLAND	FICHA DE ANALISE N Cuerpo de Agua Ko Estadístico 0,337 0,202	S ESTADISTÍO úmero de Casos Uso de Suelo Cultivos Ilmogorov-Smit gl 28 28	Pastos y Abustos rnov Sig. <,001***	Suelo Descubierto Distribución	Construcción Distribución Libre X
Recorte Ter Bosque Pruebas de M 1 2	rritorial: 1 kilometro Vegetación Inundable normalidad Metricas del Paisaje PLAND NP	FICHA DE ANALISI N Cuerpo de Agua Ko Estadístico 0,337	S ESTADISTÍO úmero de Casos Uso de Suelo Cultivos Ilmogorov-Smit	Pastos y Abustos rnov Sig. <,001*** 0,005***	Suelo Descubierto Distribución	Construcción Distribución Libre X X

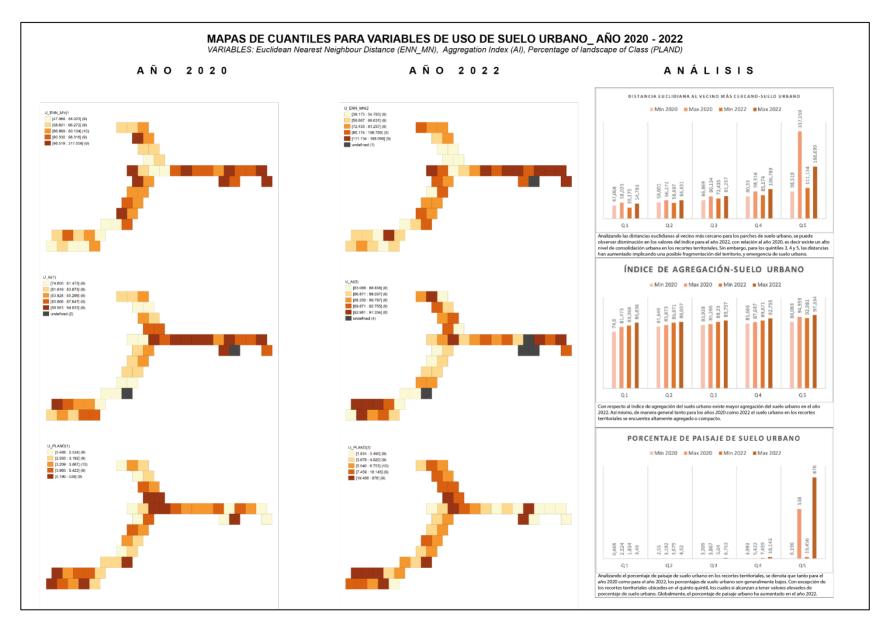
6	A MN	0,387	28	<.001***		X
7	A_MN SH_MN	0,387	28	,200¹	X	Λ
	SH_MN	•				
8	SH_MD	0,149	28	0,113	X	
9	FR_MN	0,094	28	,200¹	X	
10	FR_MD	0,123	28	,2001	X	37
11	ENN_MN	0,226	28	<,001***	••	X
12	AI	0,163	28	0,055	X	
	n límite inferior de la signific	ación verdadera.				
2 Casos pé Prueba de l	raidos Kruskal-Wallis para muestra	s independientes				
Hipótesis n	*	1		Sig.	Decisión	
	erencias en PLAND entre ca	tagorías da VEAP		0,147	Conserve la hipó	tacic nulo
				•	•	
-	erencias en NP entre categor			0,644	Conserve la hipó	
-	erencias en PD entre categor			0,645	Conserve la hipó	
•	erencias en LPI entre categor			0,259	Conserve la hipó	
	erencias en A_MN entre cate			0,174	Conserve la hipó	
	erencias en ENN_MN entre e ara muestras con distribución			0,8	Conserve la hipó	tesis nuia.
p		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	1,518	1	1,518	0,267	0,61
	Dentro de grupos	148,013	26	5,693		
	Total	149,531	27			
SH_MN	Entre grupos	0,024	1	0,024	1,189	0,286
	Dentro de grupos	0,53	26	0,02		
	Total	0,554	27			
SH_MD	Entre grupos	0,012	1	0,012	0,407	0,529
	Dentro de grupos	0,736	26	0,028		
ED MN	Total Entre grupos	0,747	27 1	0	0,052	0,821
FR_MN	Entre grupos Dentro de grupos	0,019	26	0,001	0,032	0,021
	Total	0,019	27	0,001		
FR_MD	Entre grupos	0	1	0	0,061	0,807
	Dentro de grupos	0,043	26	0,002		~,~~.
	Total	0,043	27	· 		
AI	Entre grupos	4,4	1	4,4	0,995	0,328
	Dentro de grupos	114,935	26	4,421		
NU1 1	Total confianza: *90%, **95%, **	119,335	27			
. 11 voics de		JJ / 0				
	1	FICHA DE ANALISIS	ESTADISTÍC	COS-DIFERENCIAS		
Recorte Te	Irritorial: 1 kilometro			COS-DIFERENCIAS : 30 (15 por cada año)		Año: 2020 - 20
Recorte Te		Nú				Año: 2020 - 20
Recorte Te Bosque		Nú	imero de Casos		Suelo Descubierto	Año: 2020 - 20
Bosque	rritorial: 1 kilometro	Nú	umero de Casos Uso de Suelo	: 30 (15 por cada año)	Suelo	
Bosque	rritorial: 1 kilometro Vegetación Inundable	Nú Cuerpo de Agua	umero de Casos Uso de Suelo	: 30 (15 por cada año) Pastos y Abustos	Suelo	Construcció
Bosque Pruebas de	rritorial: 1 kilometro Vegetación Inundable	Nú Cuerpo de Agua	umero de Casos Uso de Suelo Cultivos	: 30 (15 por cada año) Pastos y Abustos	Suelo Descubierto	Construcció
Bosque Pruebas de M	rritorial: 1 kilometro Vegetación Inundable normalidad	Nú Cuerpo de Agua Kol	umero de Casos Uso de Suelo Cultivos mogorov-Smir	: 30 (15 por cada año) Pastos y Abustos	Suelo Descubierto Distribución	Construcció Distribución
Bosque Pruebas de M	Vegetación Inundable normalidad Metricas del Paisaje	Nú Cuerpo de Agua Kol Estadístico	umero de Casos Uso de Suelo Cultivos mogorov-Smii	Pastos y Abustos Pov Sig.	Suelo Descubierto Distribución	Construcció Distribución Libre
Bosque Pruebas de	Vegetación Inundable normalidad Metricas del Paisaje PLAND	Cuerpo de Agua Kol Estadístico 0,215	umero de Casos Uso de Suelo Cultivos mogorov-Smin gl 26	Pastos y Abustos Poov Sig. 0,003***	Suelo Descubierto Distribución	Construcció Distribución Libre X
Bosque Pruebas de M 1	Vegetación Inundable normalidad Metricas del Paisaje PLAND NP	Cuerpo de Agua Kol Estadístico 0,215 0,209	cultivos mogorov-Smir gl 26 26	Pastos y Abustos nov Sig. 0,003*** 0,005***	Suelo Descubierto Distribución	Distribución Libre X X
Bosque Pruebas de N 1 2 3	Vegetación Inundable normalidad Metricas del Paisaje PLAND NP PD	Cuerpo de Agua Kol Estadístico 0,215 0,209 0,209	mogorov-Smir gl 26 26 26	Pastos y Abustos Pov Sig. 0,003*** 0,005***	Suelo Descubierto Distribución	Distribución Libre X X X


_	av av	0.151	26	0.04044		••
7	SH_MN	0,171	26	0,048** 0,004***		X
8	SH_MD	0,211	26	*	37	X
9	FR_MN	0,149	26	0,144	X	v
10	FR_MD	0,181	26	0,029** <,001***		X
11 12	ENN_MN AI	0,331 0,141	26 26	,200¹	X	X
	límite inferior de la signific	- î	20	,200	A	
4 Casos pér	_	acion verdadera.				
	Kruskal-Wallis para muestras	independientes				
Hipótesis nu	ıla			Sig.	Decisión	
	rencias en PLAND entre cat	egorías de YEAR.		0,765	Conserve la hipó	tesis nula.
•	rencias en NP entre categorí			0,034**	Rechace la hipóte	
No hay dife	rencias en PD entre categorí	as de YEAR.		0,036**	Rechace la hipóte	esis nula.
No hay dife	rencias en LPI entre categor	ías de YEAR.		0,311	Conserve la hipó	tesis nula.
No hay dife	rencias en A_MN entre cate	gorías de YEAR.		0,029**	Rechace la hipóte	esis nula.
No hay dife	rencias en SH_MN entre cat	egorías de YEAR.		0,018**	Rechace la hipóte	esis nula.
No hay dife	rencias en SH_MD entre cat	egorías de YEAR.		0,011**	Rechace la hipóte	esis nula.
No hay dife	rencias en FR_MD entre cat	egorías de YEAR.		0,01***	Rechace la hipóte	esis nula.
No hay dife	rencias en ENN_MN entre o	ategorías de YEAR.		0,572	Conserve la hipó	tesis nula.
	ra muestras con distribución				1	
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
LSI	Entre grupos	23,882	1	23,882	4,775	0,038**
LSI	- 1				4,773	0,038
	Dentro de grupos	130,049	26	5,002		
	Total	153,931	27			
FR_MN	Entre grupos	0,005	1	0,005	6,436	0,018**
	Dentro de grupos	0,018	26	0,001		
	Total	0,023	27			
AI	Entre grupos	13,352	1	13,352	3,837	0,061*
	Dentro de grupos	90,475	26	3,48		
	Total	103.827	27			
Niveles de o	confianza: *90%, **95%, **	*99% TICHA DE ANALISIS	ESTADISTÍO	COS-DIFERENCIAS		
Recorte Ter	ritorial: 1 kilometro	Νί	ímero de Casos	:: 30 (15 por cada año)	l	Año: 2020 - 2022
		1	Uso de Suelo			
Bosque	Vegetación Inundable	Cuerpo de Agua	Cultivos	Pastos y Abustos	Suelo Descubierto	Construcción
Pruebas de 1	normalidad					
		Kol	lmogorov-Smi	rnov	Distribución	Distribución
M	letricas del Paisaje	Estadístico	gl	Sig.	Normal	Libre
1	PLAND	0,211	17	0,042**		X
2	NP	0,184	17	0,131	X	
3	PD	0,182	17	0,137	X	
4	LPI	0,221	17	0,027**		X
5	LSI	0,235	17	0,013**		X
6	A_MN	0,161	17	$,200^{1}$	X	


7	SH_MN	0,244	17	0,008***		X
8	SH_MD	0,262	17	0,003***		X
)	FR_MN	0,216	17	0,035**		X
10	FR_MD	0,178	17	0,155	X	
11	ENN_MN	0,132	17	,2001	X	
12	AI	0,248	17	0.007***		X
	límite inferior de la signi			*,***		
13 Casos pé	_	neacion verdadera.				
13 Casos per	didos					
Dunaha da V	mustral Wallis mans manage	maa in dan an diantaa				
	ruskal-Wallis para muest	ras independientes		a.		
lipótesis nu				Sig.	Decisión	
	encias en PLAND entre	=		0,624	Conserve la h	-
No hay diferencias en LPI entre categorías de YEAR.				0,586	Conserve la h	•
No hay diferencias en LSI entre categorías de YEAR.				0,786	Conserve la hipótesis nula.	
No hay diferencias en SH_MN entre categorías de YEAR.				0,957	Conserve la h	-
	encias en SH_MD entre	_		0,568	Conserve la h	-
No hay difer	encias en FR_MN entre	categorías de YEAR.		0,724	Conserve la h	ipótesis nula.
No hay difer	encias en AI entre catego	orías de YEAR.		0,786	Conserve la h	ipótesis nula.
Prueba F pai	a muestras con distribuci	ón normal				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
NP	Entre grupos	0,591	1	0,591	0,098	0,757
	Dentro de grupos	138,769	23	6,033		
	Total	139,36	24			
PD	Entre grupos	0,591	1	0,591	0,098	0,757
	Dentro de grupos	138,249	23	6,011		
	Total	138,84	24			
A_MN	Entre grupos	35,839	1	35,839	0,087	0,771
_	Dentro de grupos	9467,88	23	411,647		
	Total	9503,719	24			
R MD	Entre grupos	0	1	0	0,112	0,741
_	Dentro de grupos	0,03	23	0,001	·	•
	Total	0,03	24	•		
ENN MN	Entre grupos	1405,403	1	1405,403	0,523	0,481
,	Dentro de grupos	40338,556	15	2689,237	- ,	-,
	Total	41743,959	16			


Anexo 7. Lista de Acrónimos - Métricas del paisaje


Métrica Acrónimo	Nombre	Tino	Descripción	Rango	Unidad	Fórmula
PLAND	Porcentaje de paisaje perteneciente a una clase	Tipo Métrica de área y perímetro	Es una medida de composición. Alcanza valores cercanos a 100 cuando existe mayor presencia de esa clase en el paisaje.	0-100	%	$PLAND = P_i = \frac{\sum_{j=1}^{n} a_{ij}}{A} (100$
NP	Número de parches	Métrica de agregación	Es una medida que, aunque describe la fragmentación de la clase no necesariamente contiene información relacionada con la configuración o composición de la clase.	Mayor o igual a 1	-	$NP = n_i$
PD	Densidad del parche	Métrica de agregación	Al igual que NP sirve para demostrar fragmentación, pero no necesariamente la composición y configuración del parche, pero en contraste a NP, sus valores son estandarizados al área y las comparaciones entre paisajes con distintas áreas es posible.	0 - 1e+06	Numero por cada 100 hectáreas	$PD = \frac{n_i}{A} \times 10000 \times 100$
LPI	Índice del parche más largo	Métrica de área y perímetro	Indica el porcentaje de paisaje que se encuentra cubierto por el parche más largo de cada clase. Alcanza valores cercanos a 100 cuando solo un parche está presente.	0-100	%	$LPI = rac{max_{j=1}^n(a_{ij})}{A} imes 100$
LSI	Índice de forma del paisaje	Métrica de agregación	Cuando sus valores se acercan a l indican que los parches se encuentran agregados o compactos en cambio cuanto mayor es el número indica que el los parches son menos compactos	Mayor o igual a 1	-	$LSI = e_i/\min e_i$
A_MN	Media del área del parche	Métrica de área y perímetro	Esta métrica resume cada clase con el valor de la media de todas las áreas del parche que pertenecen a una clase. Describe la composición y junto a área total brinda información sobre la estructura del parche.	Mayor a 0	hectáreas	$MA = rac{max_{j-1}^n(a_{ij})}{n_i} imes rac{1}{10000}$
A_MD	Mediana del área del parche	Métrica de área y perímetro	Esta métrica resume cada clase con el valor de la mediana de todas las áreas del parche que pertenecen a una clase.	Mayor a 0	Hectáreas	$\sum_{j=1}^{n} x_{ij}$
SHAPE (SH*)	Índice de forma	Métrica de forma	Es una medida de forma cuyo valor se acerca a 1 cuando se acerca a un patrón de parche de forma cuadrada y adquiere valores mayores cuando la forma es más compleja. SH_MN: Media de la forma; y SH_MD: Mediana de la Forma.	Mayor o igual a 1	-	$SHAPE = \frac{0.25^{*}p}{\sqrt{a}}$
FRAC (FR*)	Índice de dimensión fractal	Métrica de forma	Es una métrica de forma que describe la complejidad del parche. Valores cercanos a 1 indican formas cuadradas mientras que valores cercanos a 2 indican formas irregulares.	1 - 2	-	FRAC = $\frac{2*\ln(0.25*p)}{\ln a}$
PAFRAC (PAFR*)	Dimensión fractal del perímetro-área	Métrica de forma	Es una medida de forma y describe la complejidad del parche por cada clase siendo indiferente a la escala del parche.	1 - 2	-	PAFRAC=2/β
AI	Índice de agregación	Métrica de agregación	Es una medida de agregación que cuando su valor se acerca a 0 significa que no existe agregación y cuando se acerca a 100 indica agregación del parche.	0 - 100	-	$AI = \left[rac{g_{ii}}{max(g_{ii})} ight] imes 100$
ENN_MN	Distancia euclidiana a vecino más cercano de cada parche.	Métrica de agregación	Cuando su valor se acerca a 0 la distancia al vecino más cercano disminuye, es decir los parches se encuentran más agregados o compactos. En cambio cuando la distancia aumenta los parches se encuentran más aislados.	Mayor a 0	Metros	$ENN = \frac{\sum_{j=1}^{n} h_{ij}}{\hat{n}_{ij}}$


Anexo 8. Mapas de variables de suelo hídrico y de suelo urbano

